CORPORATE FINANCE ECF5101

LECTURE 3a

M\&M Dividend Policy

Assumptions:

1. Perfect capital markets - no frictions, taxes, etc.
2. Rational behaviour
3. Perfect certainty about future investment plans.

Let $\quad \operatorname{dj}(t)=$ dividend per share point by firming during period t
$\operatorname{Pj}(\mathrm{t})=$ the price $($ ex div $)$ in $\mathrm{t}-1)$ of a share in firm j at the start of t .

We must have

$$
\frac{\mathrm{dj}(\mathrm{t})+\mathrm{Pj}(\mathrm{t}+1)-\mathrm{Pj}(\mathrm{t})}{\mathrm{Pj}(\mathrm{t})}=\rho(\mathrm{t})
$$

or equivalently

$$
\begin{equation*}
\mathrm{Pj}=\frac{1}{1+\rho(\mathrm{t})}[\mathrm{dj}(\mathrm{t})+\mathrm{Pj}(\mathrm{t}+1)] \tag{2}
\end{equation*}
$$

The effect of dividend policy

$\mathrm{n}(\mathrm{t})$	$=$	number of shares on record at start of t
$\mathrm{m}(\mathrm{t}+1)$	$=$	number of new shares sold during and at the ex-dividend price
		$\mathrm{p}(\mathrm{t}+1)$
$\mathrm{n}(\mathrm{t}+1)$	$=$	$\mathrm{n}(\mathrm{t})+\mathrm{m}(\mathrm{t}+1)$
$\mathrm{V}(\mathrm{t})$	$=$	$\mathrm{n}(\mathrm{t}) \mathrm{p}(\mathrm{t})$

$\mathrm{D}(\mathrm{t})=\mathrm{n}(\mathrm{t}) \mathrm{d}(\mathrm{t})$

$$
\begin{align*}
\mathrm{v}(\mathrm{t}) & =\frac{1}{1+\rho(\mathrm{t})}[\mathrm{D}(\mathrm{t})+\mathrm{n}(\mathrm{t}) \mathrm{p}(\mathrm{t}+1)] \\
& =\frac{1}{1+\rho(\mathrm{t})}[\mathrm{D}(\mathrm{t})+\mathrm{V}(\mathrm{t}+1)-\mathrm{m}(\mathrm{t}+1) \mathrm{p}(\mathrm{t}+1)] \tag{3}
\end{align*}
$$

- 3 possible routes by which current dividends might affect the current market value of the firm $V(t)$ or the price of its shares $p(t)$.
- Dividends will affect the value of the firm $v(t)$ via the first term in brackets $D(t)$. In principle, they might also have an impact on the second term $\mathrm{V}(\mathrm{t}+1)$, but only if $\mathrm{V}(\mathrm{t}+1)$ were a function of future dividend policy and if $\mathrm{D}(\mathrm{t})$ served to convey information about future dividend policy.
- They assume future dividend policy as known and given.

Finally, current dividends can influence $v(t)$ through the third term $-m(t+1) p(t+1)$ - the value of shares sold.

If $I(t)$ is the given level of investment if $\mathrm{x}(\mathrm{t})$ is the firm's total net profit for the period we know the amount of outside funding required is
$m(t+1) p(t+1)=I(t)-[X(t)-D(t)]$
Substituting 4 into 3 , we get a cancelling out of $\mathrm{D}(\mathrm{t})$
$\mathrm{V}(\mathrm{t}) \equiv \mathrm{n}(\mathrm{t}) \mathrm{p}(\mathrm{t})=\underset{1+\rho(\mathrm{t})}{1}[\mathrm{X}(\mathrm{t})-\mathrm{I}(\mathrm{t})+\mathrm{V}(\mathrm{t}+1)]$
5

Since $D(t)$ does not appear and since $x(t), I(t), v(t+1)$ and $\rho(t)$ are all independent of $D(t)$ either by their nature or by assumption - the current value of the firm must be independent of the current dividend decision.

What does the market really capitalize?

They distinguish four different approaches:

1. The discounted cash flow approach
2. The current earnings plus future investment opportunities approach
3. The stream of dividends approach
4. The stream of earnings approach

Assume a constant discount rate $\rho(\mathrm{t})=\rho$ for all t . Setting $\mathrm{t}=0$ we can write
$\mathrm{V}(\mathrm{o})$ \qquad $[\mathrm{X}(\mathrm{o})-\mathrm{I}(\mathrm{o})]+\underset{(1+\rho)}{1} \mathrm{~V}(1)$ 6

We can keep substituting up to an arbitrary time period t
$V(o)=\sum_{t=0}^{T-1} \frac{1}{(1+\rho)^{t+1}}[X(t)-I(t)]+\frac{1}{(1+\rho)^{T}} V(T)$
in general the last term $\rightarrow \mathrm{o}$ as T approaches infinity.
(7) can be written as
$\mathrm{V}(\mathrm{o})=\mathrm{T} \rightarrow \infty \sum_{\mathrm{t}=\mathrm{o}}^{\lim } \frac{1}{(1+\rho)^{\mathrm{t}+1}}[\mathrm{X}(\mathrm{t})-\mathrm{I}(\mathrm{t})]$
which we can abbreviate to
$\mathrm{V}(\mathrm{o})=\sum_{\mathrm{t}=\mathrm{o}}^{\infty} \frac{1}{(1+\rho)^{\mathrm{t}+1}}[\mathrm{X}(\mathrm{t})-\mathrm{I}(\mathrm{t})]$

The discounted cash flow approach

Approach taken in capital budgeting. Equivalent to valuing the firm as

$$
\begin{equation*}
\mathrm{V}(\mathrm{o})=\sum_{\mathrm{t}=\mathrm{o}}^{\mathrm{T}-1} \frac{1}{(1+\rho)^{\mathrm{t}+1}}[\mathrm{R}(\mathrm{t})-\phi(\mathrm{t})]+\frac{1}{(1+\rho)^{\mathrm{T}}} \mathrm{~V}(\mathrm{~T}) \tag{10}
\end{equation*}
$$

where $R(t)$ represents the stream of cash receipts and $\phi(t)$ the outlays, abbreviating as before

$$
\begin{equation*}
\mathrm{V}(\mathrm{o})=\sum_{\mathrm{t}=\mathrm{o}}^{\infty} \frac{1}{(1+\rho)^{t+1}}[\mathrm{R}(\mathrm{t})-\phi(\mathrm{t})] \tag{11}
\end{equation*}
$$

We also know that $[x(t)-I(t)]=[R(t)-\phi(t)]$ since $x(t)$ differs from $R(t)$ and $I(t)$ differs from $o(t)$ merely by the cost of goods sold (and also by depreciation expense if we wish to interpret $\mathrm{X}(\mathrm{t})$ and $\mathrm{I}(\mathrm{t})$ as net rather than gross profits and investment. Hence 11 is equivalent to 9 .

The investment opportunities approach

Value depends on the value to the owner of the rate of return he can achieve on the investment. At t , the firm invests $\mathrm{I}(\mathrm{t})$ the investment projects produce net profits at a constant rate $\rho^{*}(t)$ per cent of $I(t)$ in each period.

The value of this will be
$I(t) \frac{\rho^{x}(t)}{\rho}-I(t)=I(t)\left[\frac{\rho^{x}(t)-\rho}{\rho}\right]$

The present worth of this now future goodwill is
$I(t)\left[\frac{\rho^{x}(t)-\rho}{\rho}\right](1+\rho)^{-(t+1)}$
and the present value of all such future opportunities is
$\sum_{t=0}^{\infty} I(t) \frac{\rho^{x}(t)-\rho}{\rho}(1+\rho)^{-(t+1)}$

Adding in the present value of the uniform perpetual earnings $\mathrm{X}(\mathrm{o})$ on the assets currently held, we get an expression for the value of the firm:
$V(o)=\frac{X(o)}{\rho}+\sum_{t=0}^{\infty} I(t) \frac{\rho^{x}(t)-\rho}{\rho}(1+\rho)^{-(t+1)}$

To show that the same formula can be derived from 9, note that their definition of $\rho^{x}(t)$ implies the following relation between the $\mathrm{X}(\mathrm{t})$:
$X(1)=x(0)+\rho^{x}(o) I(o)$
$X(t)=X(t-1)+\rho^{x}(t-1) I(t-1)$
and of successive substitution
$\mathrm{X}(\mathrm{t})=\mathrm{X}(\mathrm{o})+\sum_{\tau=0}^{\mathrm{t}-1} \rho^{*}(\tau) \mathrm{I}(\tau)$
$\mathrm{t}=1,2, \ldots \ldots . \infty$

Substituting the last expression for $\mathrm{X}(\mathrm{t})$ in 9 yields
$\mathrm{V}(\mathrm{o})=[\mathrm{X}(\mathrm{o})-\mathrm{I}(\mathrm{o})](1+\rho)^{-1}$
$+\sum_{t=1}^{\infty}\left[X(o)+\sum_{\tau=0}^{t-1} \rho^{*}(\tau) I(\tau)-I(t)\right](1+\rho)^{-(t+1)}$
$\left.=X(o) \sum_{t=1}^{\infty}(1+\rho)^{-t}-I(0)(1+\rho)^{-1}+\sum_{t=1}^{\infty}\left[\sum_{\tau=0}^{\mathrm{t}-1} \rho^{*}(\tau) I(\tau)-I(t)\right](1+\rho)^{-(t+1)}\right]$
$=X(o) \sum_{t=1}^{\infty}(1+\rho)^{-t}+\sum_{t=1}^{\infty}\left[\sum_{\tau=0}^{\mathrm{t}-1} \rho *(\tau) \mathrm{I}(\tau)-\mathrm{I}(\mathrm{t}-1)(1+\rho)\right] \mathrm{x}(1+\rho)^{-(\mathrm{t}+1)}$

The first expression is simply a geometric progression summing to $\mathrm{X}(\mathrm{o}) / \rho$ which is the first term of 12. To simplify the second expression, note that it can be written as
$\sum_{t=0}^{\infty} \mathrm{I}(\mathrm{t})\left[\rho^{*}(\mathrm{t}) \sum_{\mathrm{t}=\mathrm{t}+2}^{\infty}(1+\rho)^{-\mathrm{t}}-(1+\rho)^{-(t+1)}\right]$

Evaluating the summation in brackets gives
$\sum_{t=0}^{\infty} \mathrm{I}(\mathrm{t})\left[\rho^{*}(\mathrm{t}) \frac{(1+\rho)^{-t+1}}{\rho}-(1+\rho)^{-(t+1)}\right]$
$=\sum_{\mathrm{t}=\mathrm{o}}^{\infty} \mathrm{I}(\mathrm{t})\left[\frac{\left.\rho^{*}(\mathrm{t})-\rho\right)}{\rho}\right](1+\rho)^{-(\mathrm{t}+1)}$
which is the second term of 12 .

Expression (12) suggests that for growth stocks $\rho x(t)>\rho$ to be a glamorous stock. If $\rho X(t)<\rho$ investment in assets by a firm will reduce its share price - this stresses the importance of the cost of capital.

The stream of dividends approach

Worth of a share is
$p(t)=\sum_{\tau=0}^{\infty} \frac{d(t+\tau)}{(1+\rho)^{\tau+1)}}$
13
in terms of total market share
$V(t)=\sum_{\tau=0}^{\infty} \frac{D+(t+\tau)}{(1+\rho)^{\tau+1}}$
M\&M demonstrate that 14 is equivalent to 9 .

The stream of earnings approach

The capital to be raised in any future period is $\mathrm{I}(\mathrm{t})$ and its opportunity cost is ρ. The current value of the firm under the earnings approach is
$V(o)=\sum_{t=0}^{\infty} \frac{1}{(1+\rho)^{t+1}}\left[X(t)-\sum_{t=0}^{t} \rho I(t)\right]$ 18

18 can be re-written as

$$
\begin{aligned}
& V(o)=\sum_{t=o}^{\infty} \frac{1}{(1+\rho)^{t+1}} X(t)-\sum_{t=o}^{\infty}\left(\sum_{\tau=t}^{\infty} \frac{\rho I(t)}{(1+\rho)^{\tau+1}}\right) \\
& =\sum_{t=0}^{\infty} \frac{1}{(1+\rho)^{t+1}} X(t)-\sum_{t=0}^{\infty} \frac{1}{(1+\rho)^{t+1}} \\
& x\left(\sum_{\tau=0}^{\infty} \frac{\rho I(t)}{(1+\rho)^{\tau+1}}\right)
\end{aligned}
$$

Since the last enclosed summation reduces to $\mathrm{I}(\mathrm{t})$, the expression in turn reduces to simply

$$
\begin{equation*}
\mathrm{V}(\mathrm{o})=\sum_{\mathrm{t}=\mathrm{o}}^{\infty} \frac{1}{(1+\rho)^{\mathrm{t}+1}}[\mathrm{X}(\mathrm{t})-\mathrm{I}(\mathrm{t})] \tag{20}
\end{equation*}
$$

which is the same as expression 9 .

