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Abstract 
 
Using a few simple and basic principles, the main results of the modern theory of finance are 
obtained, from CAPM to option prices, from risk neutral valuation to intertemporal model, non-
expected utility and behavioral finance. The basic intuition inside the valuation equation is that the 
price of any asset is the sum of the prices of the moments of its probability distribution multiplied 
by their quantity. This set-up can lead to classical results but it is also capable of several important 
and easy-to-think generalizations which can be proved useful from both theoretical and practical 
points of views. 
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1. Introduction 
 
The theory of finance has become, nowadays, one of the most advanced and successful part of 
economic theory. Its models have reached a high level of specialization and complexity, exploiting 
in a unique and connected way all the best results of probability, stochastic calculus, computation 
and economics, up to the point that model details, now, are often out of the reach of a single 
specialist. Moreover, the theoretical results have suddenly jumped from the page of financial 
journals to the real life of financial markets (with the viceversa happening more often than not): it is 
daily experience to see the trader in the trading room of a large international bank or market maker 
waiting for the theoretical response, the neon burning up above and the computer blinking and 
sending in almost real time the financial model reply concerning the decision whether to trade or 
not, at what prices and quantities. 
In spite of the complexity of current models, we believe that the fundamental structure of modern 
finance can be simply explained in terms of a few set of  basic principles, from which it is possible 
to recover the essential meaning of old and new results, from Sharpe (1964) CAPM to Black and 
Scholes (1973) option prices, from Cox, Ross and Rubinstein (1979) risk neutral valuation to 
(Samuelson-) Merton (1973) intertemporal model, Allais (1953) non-expected utility and 
Kahneman and Tversky (1979) behavioral finance. 
The first and most important basic principle is the assumption that financial assets are relevant to 
investors by the moments or characteristics they involve and contribute to: mean, volatility, 
skewness etc. 
Secondly, these moments are priced in the market and asset prices are the simple result of  “moment 
quantities times moment prices”, essentially in the same way as a bill in a restaurant is the sum of 
quantities times prices of each course. 
The following exposition can be seen as a synthesis of modern financial theory from these simple 
premises: in section 2 we start with two moments and identify the price of mean and the price of 
volatility; section 3 obtains the CAPM in a very simple manner and explains the meaning of risk-
neutral valuation and arbitrage; section 4 gives the microfoundations of previous results showing 
that they come out from the maximizing behaviour of investors; section 5 generalizes, again very 
simply, by adding higher-order moments in a ordinal utility which contains the Von Neumann-
Morgenstern approach as a special case. This generalization includes the intertemporal CAPM as 
well as the solution to many “paradoxes” of behavioral finance, from Allais to Kahneman and 
Tversky; section 6 presents some suggestive empirical results; conclusions are set out in section 7. 
 
      
 
2. Price of the mean and price of the volatility  
 
2.1 A two-asset world. Let us assume a two-asset world, composed by a risk-free, zero-coupon 
bond and a risky, zero-dividend asset or stock. 
The zero-coupon bond is risk-free because it cannot default at maturity t+1. Moreover, there is a 
constant rate of return, r so that its current price, when the face value is one money unit in t+1, is 
simply: 
 

P0 = V t(1(t+1)) = 
r1

1

+
 

where V t(.) is the actual value operator. 
The future price of the stock, S(t+1), is, instead, a random variable, with a mean Et(S(t+1)) and a 
volatility or standard deviation1: 

                                                 
1  We use M and Σ for mean and volatility of prices; µ and σ for mean and volatility of rates of return. 
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2.2 The fundamental equation with two moments. We consider only the first two moments of the 
distribution as the only relevant characteristics for the investor’s preference function or as the only 
moments of the price distribution function (e.g. normality assumption), or, more simply, as a first 
approximation to the more general case. Call this the mean-vol or mean-variance model. 
The basic intuition is that the price of any asset is the price of its moments times the quantity of 
moments in the asset2: 
 

σµ Σ+= PPMS SS         (2.1) 

 
where Pµ is the price of one unit of mean and Pσ is the price of one unit of volatility. 
 
Equation (2.1) is the fundamental pricing equation for financial assets when only the first two 
moments are relevant. The asset price, therefore, reflect both the expected or ex-ante value, MS, and 
the expected or ex-ante volatility, ΣS, of the future price distribution.   
 
2.3 The price of the mean. In particular, note that for the zero-coupon bond, mean value and 
volatility are, respectively, M0=1 and Σ0=0 so that, from (2.1): 
 
P0 = 1 Pµ+ 0 Pσ = Pµ >0       (2.2) 
 
i.e. the price of the mean is just the (observable) price of the zero-coupon bond. 
 
2.4 The price of the vol. The price of one unit of volatility can be traced as well. 
Let us consider the following identity: 
 
S(t+1)-MS = max(0,S(t+1)-MS) + min(0, S(t+1)-MS) = max(0,S(t+1)-MS) - max(0, MS-S(t+1))  (2.3) 
 
where the right-hand side represents the payoff of a call option minus the payoff of a put option, 
both with maturity t+1, written on the stock and having the strike price equal to MS. 
 
In terms of current prices, using the actual value operator and its linearity: 
 
V t(S(t+1)-MS) = S - MSP0 = V t(max(0,S(t+1)-MS)) - V t(max(0, MS-S(t+1)))=  

Call(t, S, MS) – Put(t, S, MS)   (2.4) 
 
so that, from (2.1) and (2.2): 
 

0
)M,S,t(Put)M,S,t(Call

P
S

SS <
Σ
−

=σ        (2.5) 

 
The price of the volatility is just the difference between the call and the put price divided by the 
amount of volatility of the future price distribution function or, equivalently, the difference between 
the call and the put price of 1/ΣS shares of the stock. 

                                                                                                                                                                  
 
2  In absence of ambiguity, we shall suppress the dependence on current time t.   
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2.5 The price of the vol is negative. It is easy to see that this difference is negative. 
In fact, call and put prices are equal when the strike is the forward price of the stock3, SFW: 
 
0=V t(S(t+1)- SFW) = Call(t, S, SFW)-Put(t, S, SFW) 
 
but: 
 
SFW  ≡ S(t)(1+r) < S(t)(1+µS) ≡ MS  
 
whenever the expected rate of return of the stock, µS, is greater than the riskless rate of interest, r in 
which case: 
 
Call(t, S, SFW) > Call(t, S, MS)    
 
and 
 
Put(t, S(t), SFW) < Put(t, S(t), MS) 
 
so that the negative sign in (2.5) is guaranteed. Therefore the price of the vol is negative whenever 
the expected return of the stock is greater than the riskless rate, µS >r. 
 
Under the hypothesis of weak stationarity for the stock price, ΣS ≡S(t)σS can be estimated from the 
data and Pσ can be estimated as well. 
Its negative sign means that volatility is not a “good” but a “bad” in the investor’s utility function. 
 
Equivalently, using (2.1) we obtain the expression: 
 

S

S

S

0S

)r1(

rPM)t(S
P

σ+
−µ

−=
Σ
−

=σ       (2.6) 

 
Note that the negative price of the vol is the obvious cause of the persistent, negative correlation 
between changes in prices (i.e. returns) and changes in vol, a fact well documented in the empirical 
literature (e.g. Black, 1976, French, Schwert and Stambaugh, 1987, Bekaert and Wu, 2000).   
 
2.6 Risk aversion. The expected rate of return µS is also called the drift component of the stock 
price dynamics and the assumption that µS > r is equivalent to assuming the risk aversion of 
investors. 
As it is well known, we have risk aversion when investors always prefer a sure amount C than a 
random prospect with mean C. Therefore, if we have risk aversion, µS >r follows from the fact that 
otherwise the stock would be utility-dominated and nobody would buy it; viceversa, if  µS >r, then, 
risk aversion follows from the fact that otherwise the riskless bond would be utility-dominated (for 
both risk neutral and risk lovers) and nobody would buy it. Market clearing implies the stated 
equivalence between risk aversion and µS >r. 
Note, in particular, that in this case Put(t, S, MS)>Call(t, S, MS). This is so because the put option 
pays in “bad times”, when the stock is below the mean, S(t+1)<MS: for a risk averse investor, an 
asset paying in bad times is more valuable than an asset paying in good times. 
  
                                                 
3  By convention, the issue price of a forward contract is zero so that the result follows. 
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3. A new cloth for the CAPM 
 
3.1 The market portfolio. Assume that the risky asset is “the market”, with price PM, composed by 
n stocks, with price Pj and quantity xj, so that, by definition: 
 

∑
=

=
n

1j
jjM PxP  

In other words, the risk-free bond has zero net supply in aggregate. The fundamental pricing 
equation is, therefore: 
 

σΣ+= PPMP M0MM       (3.1) 
 
stating that the price PM is the discounted expected value or “risk neutral” value, MMP0,  plus an 
adjustment, ΣMPσ, proportional to its vol, ΣM. 
Note that if the price PM and its moments are observable and the market reflects equilibrium values, 
then we can calculate: 
 

0
PMP

P
M

0MM <
Σ

−
=σ       (3.2) 

 
As seen before, risk aversion means that Pσ is negative, i.e. that the market portfolio has always a 
price less than its discounted expected value. 
For example: 
 

134.0
50.0

97.01.11
P −=⋅−=σ  

 
3.2 Pricing many risky assets. Let us suppose, now, that the market portfolio is a linear 
combination of n different risky assets. 
The price of any single risky asset Pj, with outstanding quantity xj, is simply obtained from (3.1) as: 
 

σ∂
Σ∂

+=
∂
∂

= P
x

PM
x

P
P

j

M
0j

j

M
j      (3.3) 

where: 
 

( )( )[ ]
M

jjMM

M

Mj

M

n

1k
kkj

M

n

1k
jkk

j

M
MP

~
MP

~
E)P

~
,P

~
(Cov

)P
~

x,P
~

(Covx

x Σ
−−

=
Σ

=
Σ

=
Σ

Σ
=

∂
Σ∂ ∑∑

==  

 
and we used P

~
 for the future random price P(t+1).  

Using (3.2): 
 

σ












Σ
+=−

Σ
+= P

)P
~

,P
~

(Cov
PM)PMP(

)P
~

,P
~

(Cov
PMP

M

Mj
0j0MM2

M

Mj
0jj   (3.4) 

 
The amount in square brackets is the quantity of risk which is priced by the market for asset j. 
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If the covariance inside is negative, i.e. if the asset price counter-varies with the market, then the 
asset j quotes at a premium with respect to the “risk neutral” value of expected value discounted at 
the riskless rate, MjP0; if the covariance is positive i.e. if the asset price co-varies with the market 
(as it is often the case), then the asset j quotes at a discount with respect to the reference level of 
M jP0.    
For any unleverd firm j, equation (3.4) provides also the current value of the firm. 
 
3.3 Risk-neutral pricing and no-arbitrage. Recognizing that the covariance is just an expectation, 
the pricing equation (3.4) can be written equivalently as: 
 

( ) 0j0
0M

MM
jj PP

~
ÊP

P

PMP
~

1P
~

EP ≡


























Σ
−

+= σ      (3.5) 

where the risk-adjusting factor in square brackets defines a new probability space in which the 
relative prices, obtained using the zero-coupon bond as numeraire, are martingales: 
 

)
1

P
~

(Ê
P

P j

0

j =  

 
In this case, the simplest way to characterize and define operationally the new probability measure 
(risk neutral measure) is by changing the expected return of all asset from µ to r (drift change) so 
that, in particular, µM=r and, from equation (3.2), Pσ = 0. Under the new measure, prices are set “as 
if” investors were risk neutral and the price of vol was zero. 
From a fundamental theorem of finance4, if a pricing model admits a risk-neutral probability 
measure then its prices are arbitage-free, i.e. it is not possible to build an arbitrage portfolio, having 
zero cost, zero probability of future losses and positive probability of future profit. 
Moreover, if the risk-neutral measure is unique then the market is complete (and viceversa), i.e. any 
derivative security can be replicated (and hedged) through dynamic trading using the n primitive 
assets and the risk-free bond. 
        
     
  
3.4 Recovering the classical formula. Equation (3.4) is clearly the CAPM of Sharpe (1964) in 
price terms. 
In fact, dividing both sides by P0 and Pj and rearranging: 
 

)
P

M

P

1
(

P/

)
P

P
~

,
P

P
~

(Cov

P

1

P

M

M

M

0
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M

2
M

M

M

j

j

0j

j −
Σ

−=       (3.6) 

 
i.e. 

)r(r)r(
)R

~
,R

~
(Cov

r MjMM2
M

Mj
j −µβ+≡−µ

σ
+=µ     (3.7) 

representing Sharpe’s formula in the usual return terms. The expected return µj is also called the 
equilibrium cost of equity capital for firm j. 
Analogously, for the market portfolio in equation (3.1) we have: 

                                                 
4  See the seminal papers of Harrison and Kreps (1979), Harrison and Pliska (1981), Delbaen and Schachermayer 
(1994).  
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MM )r1(Pr σ+−=µ σ  
showing, for given market prices, a positive relation between expected return and volatility. 
 
 
4. Microfoundations. 
 
4.1 Two-asset case. Let us go back to the two-asset, two-moment case of paragraph 2. 
The fact that only mean and vol are relevant means that these and only these two moments enter the 
utility function of the representative investor5.  
It is easy to show (Borch, 1969, Cesari, D’Adda, 2007) that an ordinal utility function can be 
derived from the basic assumption that preferences over probability distributions can be mapped 
into preferences over vector of moments, playing the same role as the bundles of goods (and bads) 
of the consumer’s theory. More suggestively, Lancaster’s (1966) consumer theory of goods as 
bundles of characteristics can be used as a convenient reference point: like consumption goods, 
investment assets and portfolios are bundles of moments affecting directly the utility function. 
Assets are not interesting per se but for the mean, volatility etc. they can induce into the investor’s 
future wealth.          
More precisely, if W is current wealth, the investor’s portfolio problem consists in choosing the 
optimal quantities x0 and xM (i.e. optimal portfolio of the two assets) maximizing the ordinal utility 
function H in mean and vol of future wealth under the budget constraint that wealth W equals the 
amount spent for the two assets: 
 















Σ+=
+=

Σ≡Σ
+≡

Σ

σµ PMPW

PxPxW

x

MxMxM

),M(Hmax

MM00

MM

MM00

x,x M0

      (4.1) 

 
Note that an equivalent budget constraint can be written in terms of moments: quantities of 
moments times prices of moments must equal the available wealth.  
Using the chain-rule of derivatives, the first-order conditions (FOC) can be written as: 
 

0P
H

M
M

H

0PM
M

H

MMM

00

=ξ−Σ
Σ∂

∂+
∂
∂

=ξ−
∂
∂

      (4.2) 

 
so that, assuming as before and without loss of generality M0=1, and substituting for the multiplier 
ξ, we have: 
 

MM
0

M

M/H

/H
M

P

P
Σ

∂∂
Σ∂∂+=       (4.3) 

 
Using the budget constraint in terms of moments, the FOC become: 
 

                                                 
5  Sharpe (1964) assumes that all investors have the same expectations (homogeneous expectations hypothesis). As 
shown by Lintner (1969), the theory can be extended to many heterogeneous agents and under HARA utilities, a single, 
representative investor exists giving the same equilibrium results.      



 8 

0)PMP(
H

M
M

H

0MPM
M

H

MMMM

00

=Σ+γ−Σ
Σ∂

∂+
∂
∂

=γ−
∂
∂

σµ

µ

    (4.4) 

 
and, substituting for γ, we obtain the well known relation between relative prices and marginal 
utilities:   
 

µ

σ=
∂∂

Σ∂∂
P

P

M/H

/H
         (4.5) 

 
The optimal portfolio (x0, xM) satisfies (4.5) which, substituted in (4.3) gives: 
 

σ
µ

σ Σ+=Σ+= PPMP
P

P
PMP M0MM00MM     (4.6) 

 
the second equality, i.e. P0=Pµ , coming from the first one and the two budget constraints in (4.1). 
We have, therefore, derived the fundamental pricing equation (3.1).  
Under the additional hypothesis that x0=0 (endogenous riskfree asset), PM is the “market portfolio”. 
 
4.2 Many risky assets. In the case of one risk-free and n risky assets, the problem becomes: 
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with FOC: 
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so that: 

M

n
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j
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x
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But under the moment-budget constraint  we obtain again (4.5) so that: 
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Given that, in aggregate, Σ=ΣM (the market portfolio volatility), we obtain as before P0=Pµ  and 
(4.10) is equivalent to (3.4), i.e. CAPM. 
 
4.3 The price of the vol and the vol as a price. Note that a risky asset having market price Pσ may 
occasionally exist in the real world as an asset with zero expected value. 
For example, in the case of a ‘synthetic forward’ contract (a long call and a short put position), 
written on an asset Pj with strike price equal to the expected value Mj of the underlying asset, the 
price formula, applied to a future payoff of jj MP

~ − , gives: 

σΣ
= P

)P
~

,P
~

(Cov
P

M

jM
FW,j     

If the asset is the market portfolio itself, we simply have that the price of the contract is Pσ times 
σM, a negative quantity.6  Consequently, a particular short position in this synthetic forward contract 
has a price equal to the vol: 

σ

=σ
P

P FW,M
M  

 
4.4 Non-expected utility. The Von Neumann-Morgenstern (1947) theory of choice under 
uncertainty has been for a long time the standard approach to model the maximizing behaviour of 
agents in financial markets. The basic result is the existence of a utility function U(.) (VNM utility) 
describing the optimal decisions of an investor as those which maximize the expected utility of his 
or her future wealth E(U(W

~
)). Such a beautiful result was obtained at the cost of special and 

controversial axioms concerning the structure of preferences in case of uncertainty (so called 
independence axiom). 
The approach followed above, rooted in Hicks (1962, 1967), replaces the VNM expected utility 
with the more fundamental and less demanding ordinal utility ( )),...W

~
(Std),W

~
(EH  which allows us 

to avoid the main flaws of the former and provides us with a generalized framework for optimal 
behaviour in both complete and incomplete markets. 
    
 
5. From two to many moments. 
 
All previous results can be generalized to the case of three or more moments as relevant 
characteristics. 
5.1 Four moments case. The first immediate generalization is the introduction of skewness (third 
moment) in the utility function and the pricing equation; a second generalization is kurtosis. 
Skewness is an effect of the asymmetry of the probability density function with respect to the mean:  
if right-hand cases have more weight than left-hand cases (“good news”) we have positive 
skewness; negative skewness (“bad news”) is the opposite. Kurtosis, instead, is a measure 

                                                 
6  Note that in this case the strike is 

0

MM
M P

PP
M

Σ−
= σ , greater than the forward price 

0

M

P

P
 for which the contract 

has zero value. 
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concerning the total weight of the tails of the probability function. High kurtosis results from high 
weight of the tails (relative to the normal case) i.e. high, abnormal frequency of extreme events: 
very high and very low prices and returns, boom and crashes of financial markets.      
The price of the market portfolio becomes: 
 

κλσµ Ψ+Λ+Σ+= PPPPMP MMMMM     (5.1) 

 
ΛM being the skewness and ΨM the kurtosis of the market portfolio: 

( )

( ) 4
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        (5.2) 
 
Note that skewness and kurtosis are multiplied by their market prices, Pλ and Pκ respectively, whose 
role is analogous to the price of mean and vol introduced before. Under plausible preference 
assumptions, Pλ should be positive and Pκ negative.  
Analogously, the generic asset j has price: 
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j
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where, in addition to the covariance term, co-skewness and co-kurtosis of the asset with the market 
portfolio are included: 
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Note that coskewness and co-kurtosis can be expressed in terms of covariance: 
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The pricing equation (5.1) or (5.3) presents a disarming simplicity. It no more reliably represents a 
“theory” of asset prices than the receipt handed over before leaving a supermarket represents a 
theory of the prices of consumer goods: it simply says that total value is the sum of “prices times 
quantities” of each single component. 
 
5.2 Relevant moments. The importance of taking into account all relevant moments in the pricing 
function is explained by a simple example (Dybvig and Ingersoll, 1982) in which the two-moment 
pricing in equation (3.4), i.e. the CAPM, does not rule out arbitrage opportunities when market are 
complete. 
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Take the pricing function (3.4) in the form (3.5) for any derivative Z: 
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and consider the case: 
 













γ
+≤

γ
+>

−−γ
≡

1
MP

~
if0

1
MP

~
if

1)MP
~

(

1

Z
~

MM

MM
MM

 

 
Then: 
 

0P
1

MP
~

obPrP
1

MP
~

1EP 0MM0MMZ <








γ
+>−=











γ
+>−=  

so that a negative price (cash inflow) is assigned to a derivative with non negative payoff. Buying 
(i.e.selling, because of the negative price) the derivative is an arbitrage. 
Analogously, a call option on the market portfolio with strike MM+1/γ (or greater) has non-negative 
payoff and negative value: 
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In both cases, the derivatives are nonlinear assets with significant, unpriced higher-order moments 
not taken into account in the mean-vol pricing function. Derivatives call for an explict treatment of 
skewness and kurtosis effect in the pricing function.  
 
 
 
5.3 Intertemporal CAPM. Following Merton (1973), a pricing equation equivalent to (5.3) can be 
obtained in a multiperiod setting, in which a representative agent makes consumption and 
investment decisions in order to maximize the utility from of present and future consumption when 
assets are risky and evolve according to general stochastic processes.     
Solving the stochastic dynamic programming, we obtain an optimality condition which is the 
dynamic version of (5.3): 
 

( ) ( ) .........)1t(P),1t(PCov)t(F)1t(P),1t(PCov)t(F))1t(P(E)t(P)t(P 2
Mjt3Mjt2jt0j ++++++++=  

 
The conditional moments replace the unconditional ones and skewness and kurtosis appear as 
covariances with power functions of the market portfolio (see (5.5) above).   
 
5.4 Removing paradoxes. Many paradoxes have challenged, across the centuries, the prevailing 
theory of value, from St. Petersburg’s (Bernoulli, 1738) to Allais (1953) and Kahneman and 
Tversky (1979, 1981). 
They arise whenever the actual behaviour of many people seems not to conform to the theory so 
that two alternative reactions are possible: i) trying to show that not-conforming people are wrong 
or irrational or confused; ii) trying to build a generalized approach which encompasses both 
behaviours and is liable to empirical measurement and test.     
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The approach we have presented here provides us with one key to make the paradoxes vanish in a 
coherent and intuitively appealing manner. 
The main point is to evaluate the alternative prospects by measuring their relevant moments and 
multiplying them with the corresponding (market or subjective) prices. 
For example, in the coin tossing game known as the St. Petersburg paradox7 we have to price an 
infinite number of tickets (the Arrow-Debreu securities, one for each possible states of the world), 
having each one a constant mean of ½ and an increasing volatility of  ½(2n-1)1/2 so that risk 
aversion quickly drives the price of high-order tickets to zero and the price of the game to a finte 
value. 
Analogously, Allais (1953) experimental games can be explained by careful evaluation of mean, 
vol, skewness and kurtosis. 
As a classical example, let us consider the following alternatives, A versus B and A’ versus B’, 
where, usually, people prefer A to B but also B’ to A’ against the expected utility prescription.  
The first column is the payoff and the second column is its probability. 
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However, according to our approach, you have to consider mean and vol, calculated in the 
following table: 
 
 A B A’ B’ 
mean 30 32 7.5 8 
volatility 0 16 13 16 
 
so that, using Pµ=1 and Pσ=-0.134 as (subjective) moment prices in the pricing equation (3.1), we 
obtain PA=30 > PB=29.86 but also PA’=5.76 < PB’=5.86, in agreement with the observed behaviour.  
 
 
6. Some empirical evidence 
 
Without any attempt to give an exhaustive empirical treatment of the matter, we want to show some 
simple but robust evidence in agreement with out framework. 
A first consequence of the pricing equation (3.1) is that changes in price dP are, via the negative 
price of the vol, negatively correlated with changes in the price volatility, dΣ. Equivalently, the (ex 

post) rates of return 
P

dP
R =   are negatively correlated with changes in the return volatility dσ. 

In fact, there is a large and documented evidence that this is the case (Black, 1976, French, Schwert 
and Stambaugh, 1987, Bekaert and Wu, 2000). 
For example, Fig. 1 shows the negative relation between the daily return on the S&P 500 index and 
the relative change of the implied volatility index obtained from options written on the same index 
(CBOE VIX index) in the period between February 2001 and October 2007.   

                                                 
7  In the St. Petersburg’s problem, described by Nicolas Bernoulli in 1713 and solved by his cousin Daniel in 1738, a 
fair coin is tossed until the first “heads”, giving a prize of 2n-1 if this happens at the n-th flip. The question was to find 
the fair price to enter the game given that the traditional method at that time (the expected value) was providing an 
absurd, infinite price. 
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FIG. 1  

S&P 500: price change and volatility change

y = -3.9686x + 0.002
R2 = 0.5246
Corr = -0.72
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The same result is obtained using the DJ Euro stock index (DJ Euro Stoxx 50) and the Nasdaq 100 
index, reflecting the same relation in both markets (Fig. 2). 
Note that such a strong negative correlation between stock return and return volatility implies that a 
long position in stocks contains an implied  short position in the vol. 
  
FIG. 2 

DJ Euro Stoxx 50: price change and volatility change 

y = -2.6642x + 0.0014
R2 = 0.5023
Corr = -0.71
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Nasdaq 100: price change and volatility change

y = -1.2208x + 0.0006
R2 = 0.2667
Corr = -0.52
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Secondly, a recursive regression can be run, in order to estimate the expected return µ and the 
(unobserved) prices of vol Pσ and skewness Pλ, under the hypothesis of a three-moment pricing 
equation. 



 14 

We have run the recursive regression: 

2007Oct31,....,2005Nov1TandT,....,2001Feb2tb
)r1(

1
aP ttTt

t
Tt,M ==ε+σ+

+
=  

 
where PM,t is the price index level and σt is the volatility index level. 

From the time series of estimated recursive coefficients and regression errors, TTT ˆ,b̂,â ε  we obtain 

the estimates of the expected rate of return and the prices of volatility and skewness: 
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−=µ
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where λ is the skewness (5.2) calculated on rates of return.   
   
The following graphs, Fig. 3, 4 and 5, show the results for the years 2006-2007 for S&P 500, DJ 
Euro Stoxx 50 and Nasdaq 100. All values have the expected sign. In particular, a positive price of 
skewness is able to explain the asymmetric behaviour of ex post volatility, which is higher after 
negative shocks (negative skewness or bad news) and lower after positive shocks (positive 
skewness or good news).     
 
FIG. 3 
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FIG. 4 

 
 
 
 
 
FIG. 5 
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7. Conclusions 
 
In spite of the complexity of current financial models, we have shown that the fundamental 
structure of modern finance can be simply explained in terms a few set of  basic principles, from 
which it is possible to recover the essential meaning of old and new results, from Sharpe (1964) 
CAPM to Black and Scholes (1973) option pricing, from Cox, Ross and Rubinstein (1979) risk 
neutral valuation to Samuelson-Merton (1973) intertemporal model, Allais (1953) non-expected 
utility and Kahneman and Tversky (1979) behavioral finance. 
The first, basic principle is the assumption that financial assets are relevant to investors through the 
moments or characteristics they involve and contribute to: mean, volatility, skewness etc. 
Secondly, these moments are priced in the market and asset prices are the simple result of  “moment 
quantities times moment prices”, essentially in the same way as a bill in a restaurant is the sum of 
quantities times prices of each course. 
The proposed approach is useful under various respects: in the case of two moments, it produces the 
classical mean-variance model; it gives insights into the modern no-arbitrage pricing; it suggests 
simple generalizations through the inclusion of higher-order moments; it provides an ordinal utility 
function which overcomes many drawbacks of the expected utility approach; it has important 
empirical contents both at the micro and the macro level of analysis. 
The recent development of active markets on volatility-linked securities (VIX futures, swaps and 
options8) seems a direct test of the usefulness of our approach. Active markets for skewness and 
correlation can be easily predicted as a following step. In all cases, the approach we have shown 
seems the most natural and easy framework to understand the achieved results and anticipate future 
theoretical and practical developments in finance. 
 

                                                 
8  See, for example, Shalen and Hiatt (2004) and Carr and Wu (2006). They show that CBOE VIX  equals the forward 
price of a portfolio of quoted options on the S&P500, replicating the (risk-neutral) expected value of  future volatility. 
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