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Abstract

This paper proposes a new statistical model for the analysis of data which
arrives at irregular intervals.  The model treats the time between events as a
stochastic process and proposes a new class of point processes with
dependent arrival rates.  The conditional intensity is developed and
compared with other self-exciting processes.  Because the model focuses
on the expected duration between events, it is called the Autoregressive
Conditional Duration (ACD) model. Asymptotic properties of the Quasi
Maximum Likelihood estimator are developed as a corollary to ARCH
model results.  Strong evidence is provided for duration clustering for the
financial transactions data analyzed; both deterministic time-of-day effects
and stochastic effects are important. The model is applied to the arrival
times of trades and therefore is a model of transaction volume,  and also to
the arrival of other events such as price changes. Models for the volatility
of prices are estimated with price based durations, and examined from a
market microstructure point of view.
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1.  Introduction

With the rapid development in computing power and storage capacity, data is

being collected and analyzed at ever higher frequencies.  For many types of data, the

ultimate in high frequency data collection has been reached and every transaction is

recorded.  This limit has been reached for financial market transactions which are the

focus of this paper, as well as telephone calls, credit card purchases, or the sale of any

good using scanning devices.   Since the quantity purchased in a period of time is often the

key economic variable to be modeled or forecast, it is natural to study the timing of

transactions. Financial market microstructure theories are typically tested on a transaction

by transaction basis so again the timing of these transactions can be central to

understanding the economics.

Transaction data inherently arrive in irregular time intervals, while standard

econometric techniques are based on fixed time interval analysis.  There is a natural

inclination for the econometrician to aggregate transactions data to some fixed time

interval.  For purchases of consumer durables by an individual, a natural interval might be

months or even years.  On the other extreme, frequently traded stocks will have

transactions every few seconds, hence a much shorter interval is appropriate.  If a short

time interval is chosen, there will be many intervals with no new information and

heteroskedasticity of a particular form will be introduced into the data.  On the other hand,

if a long interval is chosen, the micro structure features of the data will be lost.  In

particular, multiple transactions will be averaged and the characteristics and timing

relations of individual transactions will be lost, mitigating the advantages of moving to

transaction data in the first place.

The problem becomes more complicated when one realizes that the rate of arrival

of transactions type data may vary over the course of the day, week or year making the

choice of an “optimal” interval more difficult.  For stocks, activity is higher near the open

and the close than in the middle of the day.  For currency markets, there are clear periods

of high and low activity as markets around the world open and close.  Even more

intriguing is the case of transactions which are generally infrequent but which may
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suddenly exhibit very high activity.  This may be due to some observable event such as a

news release or to an unobservable event which may best be thought of as a stochastic

process.  In these cases the choice of a fixed interval for data analysis is very perilous as it

may leave the investigator with many uninformative points, or disguise the periods of most

interest.

This paper will propose an alternative to fixed interval analysis.  The arrival times

are treated as random variables which follow a point process.  Associated with each arrival

time are random variables called marks such as volume, bid ask spread, or price.  A new

model for dependent point processes is formulated.  The conditional intensity function is

parameterized in terms of past events in a way that seems particularly well suited for the

transactions process.  The most fundamental application of the model is to measure and

forecast the intensity of transaction arrivals which is essentially the instantaneous quantity

of transactions. The basic formulation of the model parameterizes the conditional intensity

as a function of the time between past events, and numerous natural extensions include

other effects such as characteristics associated with past transactions, or any other outside

influence.  The dependence of the conditional intensity on past durations suggests that the

model be called the Autoregressive Conditional Duration (ACD) model.

Sometimes the investigator may not be interested in modeling the time between

transactions but rather in studying the marks associated with the arrival times.  A method

is proposed for modeling the rate of change of other variables by selectively thinning the

point process.  A model for the intensity of the price changes is developed for the

transactions data analyzed.  In this context, hypotheses from market microstructure

theories can be examined.

Associated with the intensity is the conditional expectation of the waiting time until

the next event.  The model therefore has an interesting interpretation in the context of time

deformation models because the model is formulated in transaction time but models the

frequency and distribution of calendar time between events.  See for example, Clark

(1973) and Tauchen and Pitts (1983), and more recently Stock (1988), Muller et al.

(1990) and Ghysels and Jasiak (1994).  The ACD formulation can use but does not require



3

auxiliary data or assumptions on the causes of time flow;  it is simply a time series model

of  time.

The model is applied to transactions data from financial markets.  Recent research

by Kyle (1985), Admati and Pfleiderer (1988) and Easly and O’Hara (1992) has suggested

that the frequency of transactions should carry information about the state of the market.

In particular the models suggest clustering of transactions.  Clustering of transactions is

exactly what is found by examining IBM transactions data. Even after time-of-day effects

are removed, large autocorrelations exist in the time intervals between trades.  The ACD

model also provides a framework to test if the intensity function is influenced by observed

market variables.  In particular, several models are estimated in an attempt to identify the

source of transaction clustering.

The following section develops the statistical underpinning for dependent point

processes and section 3 introduces the Autoregressive Conditional Duration model.

Section 4 discusses asymptotic properties of the ACD model and section 5 discusses

extensions of the model.  Section 6 gives empirical results for IBM transaction data which

in  Section 7 are related to the economics of market microstructure.  Section 8 discusses

an extension of the model to model the price process and test some hypothesis about

market microstructure for the IBM data.  Finally, section 9 concludes.

2.  The Conditional Intensity Process

This section will give a brief description of some of the relevant point process

models for intertemporally correlated events.  After this discussion, the particular

parameterization of the ACD model will be developed.

Consider a stochastic process that is simply a sequence of times {t0,t1, ..., tn, ...}

with t0<t1<...<tn....   Associated with the arrival times is the counting function N(t) which

is the number of events that have occurred by time t.  Clearly it is a step function which is

continuous from the left with limits from the right. If there are characteristics associated

with the arrival times, such as a price or volume, the process is called a “marked point

process”.
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Two general characterizations of a point process can be introduced here following

Snyder and Miller(1991).  A point process on [ , )t0 ∞  is said to “evolve without

aftereffects” if  for any t>t0 , the realization of points during [ , )t ∞  does not depend in any

way on the sequence of points during the interval [ , )t t0 .   A counting process is said to be

“conditionally orderly” at time t≥t0 if for a sufficiently short interval of time and

conditional on any event P defined by the realization of the process on [ , )t t0 , the

probability of two or more events occurring is infinitessimal relative to the probability of

one event.

We focus on point processes which evolve with aftereffects and which are

conditionally orderly.  A complete description of such processes is naturally formulated in

terms of the intensity function conditional on all available past information which must

minimally include the arrival times and the count.  This conditional intensity process is

therefore defined1 by

(1) λ( ( ), ,..., ) lim
( ( ) ( ) ( ), ,..., )

( )
( )

t N t t t
P N t t N t N t t t

tN t
t

N t
1

0

1=
+ >

→∆

∆

∆

In many applications this will equivalently be called the hazard function,

particularly in a context where there may be many individuals rather than a point process

under study.    As discussed in Lancaster (1990) or Snyder and Miller(1991) for example,

the conditional intensity, the conditional density of the durations or “waiting times”

between events, and the conditional survivor function each are complete descriptions of a

conditionally orderly stochastic process.  Letting pi be a family of conditional probability

density functions for arrival time ti the log likelihood can be expressed in terms of the

conditional densities or intensities as:
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1 Throughout it will be assumed that when N(t)=0, there are no further arguments to the
function.
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Equation (1) is a general statement of the intensity function of  a “self-exciting”

point process which is a process where the past evolution impacts the probability structure

of future events.  It was originally proposed by Hawkes (1971a,b 1972) and by

Rubin(1972).  These are sometimes called Hawkes self-exciting processes.  The success in

using such processes depends upon the parameterization of the conditional intensity.

The simplest point process in this class is the Poisson process for which λ is a

constant parameter. A more flexible process is the Inhomogeneous Poisson process for

which the intensity varies only with t itself so that the arrival rate is assumed to be a

deterministic function of time.  In neither case however, do past events influence the

future arrival rates; they evolve without aftereffects.

When the intensity depends on the number of events but not the timing of these

events, then the process is a pure Birth process.  Rubin(1972) introduced limited memory

self-exciting processes.  A process is called an “m-memory self-exciting counting process”

if only the m most recent arrival times are present in the conditional intensity.  In this

notation, a zero memory self-exciting process is a Markov birth process, and a

homogeneous 1-memory process is a renewal process.

With longer memory there are many suggestions on how to parameterize the

conditional intensity.  We will briefly describe two existing classes of point process models

that are characterized by (1).  The first class of models are formulated in calendar time.

Linear representations of this class of models can be expressed as:

(3) ( )λ ω πt N t t t t tN t i
i

N t

( ), ,..., ( )( )

( )

1
1

= + −
=
∑

where each past arrival time ti contributes π(t-ti) to the intensity at time t. π is called an

infectivity measure as motivated by epidemiology, as well as population dynamics and

earthquake prediction2. These types of specifications were initially proposed by Hawkes

(1971a,b 1972) and are used in Ogata and Akaike (1982) and Vere-Jones and Ozaki

(1982) with Laguerre polynomials defined on t>0 for the infectivity measure. These

calendar time models are inappropriate in the study of transactions type data since they

                                               

2 See Ogata and Katsura (1986) for a extensive review.
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imply that the marginal effect of an event that occurred, say, 10 minutes in the past is

independent of the intervening history; there may have been 0 events or 100 events in

between.

The second class of conditional intensity parameterizations focus on the intervals

between events and are formulated in event time.    In these, the conditional intensity

could be parameterized in terms of

(4) ( )λ ω πt N t t t t tN t i N t i N t i
i

N t

( ), ,..., ( )( ) ( ) ( )

( )

1 1
1

= + −+ − −
=
∑

so that the impact of a duration between successive events depends upon the number of

intervening events. Such models appear to have first been studied by Wold (1948) and

later by Cox (1955).   Wold proposed a model for correlated intervals using an

autoregressive structure similar to standard ARMA techniques.  The model was

subsequently reformulated by Gaver and Lewis(1980), Lawrence and Lewis(1980) and

Jacobs and Lewis(1977) as “exponential autoregressive-moving average EARMA(p,q)

models.”   These models assume that the durations are conditionally exponentially

distributed with a mean which follows an ARMA process.  The formulation of an additive

error process which has this property is complex and the resulting maximum likelihood

procedures are virtually unworkable, at least in general settings.

In some cases, the conditional intensity can be derived from more fundamental

assumptions.  For example, the Cox(1955) or Doubly Stochastic model typically assumes

that there is a latent independent  process which governs the arrival rate3.  Suppose this is

a counting process M(t) which might be called “information” for financial applications.

Thus the intensity is conditional on M(t) as well as t itself.  Snyder and Miller(1991) in

Theorem 7.2.2 prove that such a process is itself a self-exciting process with a form given

by (1), which is simply the expectation of the intensity over M conditional on the past

history of N.  Hence, the class of self-exciting processes includes the Cox process

although it is not generally easy to determine the form of the intensity process from the

conditional expectation.

                                               

3 See Grandell(1976) for a good discussion of the Doubly Stochastic models.
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Cox (1955) introduced a model for duration analysis with covariates and later

generalized the model to the popular proportional hazards framework.  The conditional

intensity can be written as

(5) ( ) { }λ λ βt z z t zN t N t( ) ( ),..., ( ) exp1 = ′

where zi is a vector of explanatory variables associated with the arrival time i.  One

suggestion mentioned in Cox(1972b) was to include lagged durations as an explanatory

variable. Duration models were introduced into econometrics by Lancaster(1979), and

given a dynamic focus in  Heckman and Borjas (1980) and Heckman (1981) among

others, to examine the impact of past unemployment on current spells.  In these models,

the data are typically short time series on many individuals, so that the question of whether

this truly reflects state dependence or merely unmeasured heterogeneity becomes very

important.

In this paper, a new family of self-exciting processes will be introduced.  They will

have conditional intensities different from all of these representations.  The process will be

introduced in terms of its conditional densities.

3.  The ACD model

The ACD model is most conveniently specified in terms of the conditional density

of the durations.  Letting xi=ti-ti-1 be the interval between two arrival times which will be

called the duration, the density of xi conditional on past x’s will be specified directly.

Let ψi  be the expectation of the ith duration which is given by

(6) E x x x x x xi i i i i i( ,..., ) ( , ..., ; )− −= ≡1 1 1 1ψ θ ψ .

Let the ACD class of models consist of parameterizations of (6) and the assumption that

(7) xi i i= ψ ε

where
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(8) ( ){ } ~ . . . ;ε ε φi i i d p with density , and θ and φ are variation free.4

It is natural to call the model Autoregressive Conditional Duration or ACD since the

conditional expectation of the duration will depend upon past durations.

From expression (6) - (8) it is apparent that we now have a host of potential

specifications for the ACD model each defined by different specifications for the expected

durations and for the distribution of ε.  To derive a general expression for the conditional

intensity, let  p0 be the density function of ε and let S0 be the associated survival function.

Then define

(9) λ 0
0

0
( )

( )

( )
t

p t

S t
=

as the baseline hazard using the name popularized by the proportional hazard literature.

Then the conditional intensity of an ACD model can be expressed in general as

(10) λ λ
ψ ψ

( ( ), ,..., )( )
( )

( ) ( )

t N t t t
t t

N t
N t

N t N t
1 0

1 1

1=
−









+ +

so that the past history influences the conditional intensity by both a multiplicative effect

and a shift in the baseline hazard.  This model is called an  accelerated failure time model

since the past information influences the rate at which time passes.  Such models are

natural in some medical examples where patients with particular characteristics move

through a disease more rapidly than others.  These models are also natural in finance.  A

large literature on time deformation suggests that sometimes time flows very rapidly in

financial markets while in other periods it moves slowly.  In this case, the rate of time flow

depends on the past event arrival times through the function ψ.

The simplest version of the ACD assumes that the durations are conditionally

exponential so that the baseline hazard is simply one and the conditional intensity is

(11) ( )λ ψt x xN t N t( ) ( ),..., 1 1
1= +

−

                                               

4 If θ∈Θ and φ∈Φ, then (θ,φ)∈Θ⊗Φ.
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An m-memory conditional intensity would imply that only the most recent m durations

influenced the conditional duration suggesting a possible specification:

(12) ψ ω αi j i j
j

m
x= + ∑ −

=0

A more general model without the limited memory characteristic is

(13) ψ ω α β ψi j i j
j

m

j i j
j

q
x= + ∑ + ∑−

=
−

=0 0

which will be called an ACD(m,q) where the m and q refer to the orders of the lags.

This model is convenient because it allows various moments to be calculated by

expectation regardless of the form of the baseline hazard.  For example, the conditional

mean of xi is ψi, the conditional duration, but the unconditional mean is

(14) ( )E xi
j j

( )
( )

= =
− +∑

µ ω
α β1

This is most easily seen by taking expectations of both sides of equation (13)  although a

dynamic analysis in the proof of lemma 1 of Engle and Russell(1995b) establishes that this

exists only when all the roots of the associated difference equation lie outside the unit

circle.

The simplest and often very successful member of this family is the EACD(1,1)

where E signifies the exponential distribution for the errors.

(15) ψ ω α βψ α β ωi i 1 i 1x  for , 0,  > 0,  i,  i = 1...N= + + ≥ ∀− −

In this model, the conditional variance of x is ψ i
2  but the unconditional variance is given

by :

(16) σ µ
β αβ

β αβ α
2 2

2

2 2

1 2

1 2 2
=

− −
− − −









Thus whenever α>0 the unconditional standard deviation will exceed the mean exhibiting

"excess dispersion" as so often noticed in duration data sets.

The model in (13) can also be formulated as an ARMA(m,q) model for durations.

Letting η ψi i ix≡ −  which is a Martingale difference sequence by construction, the

duration process can be expressed as
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(17) x xi j j i j
j

m q

j i j
j

q

i= + +∑ − ∑ +−
=

−
=

ω α β β η η( )
max( , )

0 0

which is an ARMA(m,q) process with highly non-Gaussian innovations.

Forecasts of waiting times can be computed directly from this representation using

the conventional ARMA analytics. Thus it is simple to compute analytically the expected

waiting time until the  i+kth transaction occurs.  If all roots of the associated polynomial

are less than unity, then the duration process will be mean reverting and the impact of a

given duration on future expected durations will die out exponentially.  Since the

transactions to be analyzed occur within seconds of each other,  the persistence of shocks

will be  very limited in calendar time unless the roots are very close to unity.

The formulation in (17) is very close to the EARMA models mentioned above

since the conditional durations are exponential and follow an ARMA process.  The

simplicity arises from using a multiplicative error in the ACD.

4. Asymptotic properties of the Exponential ACD Model

Readers who are familiar with the ARCH class of models will immediately

recognize the relationship to models of conditional variance.  The ACD(1,1) is analogous

to the GARCH(1,1) and will have many of the same properties.  Just as the GARCH(1,1)

is often a good starting point, the ACD(1,1) seems like a natural starting point.  However,

just as there are many alternative volatility models, there are many interesting possibilities

here.  For recent surveys on ARCH models and lists of different classes, see Bollerslev,

Engle and Nelson(1994), Bollerslev Chou and Kroner(1992) and Bera and Higgins

(1992).  The ARCH model was originally introduced by Engle(1982).

The connection with GARCH models is however even deeper than this analogy

suggests.  The theorems which establish QMLE properties of GARCH(1,1) even in the

presence of unit roots can be carried over to the EACD(1,1) models as in the following

corollary to Theorems 2 and 3 of Lumsdaine(1996) or Theorems 1 and 3 in Lee and

Hansen(1994).

Corollary to Lee and Hansen(1994)
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If

1) E x xi i i i i− − −≡ = + +1 0 0 0 1 0 0 1( ) , ,ψ ω α β ψ ,

2)

ε ψ

β α ε

i i i

i i i

x

E F a s

≡

+ <−

/

sup [ln( ) ] . .

,0

0 0 1 0

  is   i) strictly stationary and ergodic

                            ii) nondegenerate

                            iii) has bounded conditional second moments

                            iv) 

3) θ ω α β0 0 0 0≡ ( , , ) is in the interior of Θ

4) L
x

i
i

ii

N T
( ) log( )

( )
θ ψ

ψ
= − +









=
∑

1
  where  

ψ ω α βψ
ψ ω β

i i i

i

x i

i

= + + >
= − =

−1 1

1 1

  for  

  for / ( )

Then:

a)  the maximizer of L will  be consistent and asymptotically normal with a covariance

matrix given by the familiar robust standard errors from Lee-Hansen, and

b) the model can be estimated with ARCH software by taking xi  as the dependent

variable and setting the mean to zero.

Proof:

Let y d xi i i=  where di is independent of x and i.i.d. equal to 1 with probability .5 and -1

with probability .5.  Then the expected value of yi  is zero and its  variance is ψ0,i.
Substituting into condition 4 gives exactly the Gaussian quasi-loglikelihood used by Lee
and Hansen.  Conditions i) and ii) follow because the square root of a strictly stationary,
ergodic and non-degenerate positive random variable will also be strictly stationary,
ergodic and non-degenerate.  Conditions iii) and iv) are equivalent to the conditions in Lee
and Hansen.  Thus a) follows from Hansen and Lee.  Result b) follows from noticing that
di disappears from the likelihood. QED.

If α +β is less than or equal to one, then condition (iv) of assumption 2 is

automatically satisfied, but it is also satisfied for some unit root and explosive cases.  The

theorem therefore covers cases such as integrated duration processes and processes where

the durations divided by their expectation need not be i.i.d. but only strictly stationary,

giving added robustness to the empirical results. This result of course only applies to the

(1,1) model and it is not easy to extend it in the integrated GARCH case and consequently

will not be easy to extend here.  However it is a good conjecture that similar results will be

true.  Engle(1996) presents such a result for the covariance stationary case.
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It is important to note that this result does not ensure efficiency of the estimates.

Maximum likelihood with the correct density will be the more efficient estimator and it is

possible that the gains will be substantial, particularly if samples are not very large.  Thus

we consider parametric families.

5. Extensions of the Model

The specifications in (11) and (13) can be generalized in many ways.  The baseline

hazard can be given many parametric shapes. The most popular is to assume that the

conditional distribution is Weibull which is equivalent to assuming that xγ is exponential.

Other popular alternatives are the generalized gamma, log logistic, lognormal, as discussed

in Lancaster(1990).  A further step is to estimate the hazard semiparametrically using

methods of piecewise constant, spline, kernel or other smoothers.  In the ARCH context

Engle and Gonzalez-Rivera(1991) estimated the density using a spline, while in the

duration context Engle(1996) used a k-nearest neighbor estimator which is also used here.

In this paper only the Weibull will be estimated.  For the Weibull distribution with

parameters (κ,γ), the hazard is:

(18) h x x( ) = −κ γγ γ 1

and the conditional intensity in terms of ψi takes the slightly more complicated form

(19) ( ) ( ) ( )( )λ γ ψ γ
γ γ

t x x t tN t N t N t( ) ( ),..., 1 1
1 1

1 1= +



 −+

− −
Γ

where Γ(⋅) is the gamma function and γ is the Weibull parameter.  The conditional

intensity is now a two parameter family which can exhibit either increasing or decreasing

hazard functions.  This makes especially long durations more or less likely than for the

exponential depending on whether γ is greater or less that unity respectively.   A simple

version of the ACD might be specified by (15) and (19) and be called the Weibull

ACD(1,1) or WACD(1,1).
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 The log likelihood for the Weibull ACD is

(20)
( ) ( )

ln ln
( ) γ

γ
γ

ψ
γ

ψ

γ

x

x x

i

i

i

i

ii

N T 





 +

+















−
+















∑
=

Γ Γ1 1 1 1

1

for some parameterization of ψ.  When γ=1 this reduces to the log likelihood for the

exponential ACD.   Clever optimization can avoid repeated evaluation of the gamma

function.

The dynamic specification of the conditional duration can also be easily

generalized. This could be a non-linear function and it could include other variables such

as the marks of previous arrivals as in:

(21) ψ ψ ψ ψ ψ θi i i i p i i i q i i i lx x x z z z= − − − − − − − −( , ,..., , , ,..., , , ,..., , )1 2 1 2 1

Such a specification includes models analogous to the EGARCH,  NGARCH, Power

GARCH and many others as possibilities.  More interestingly, it allows economic variables

to enter the equation which determines the frequency of transactions.  From this version of

the model one can test hypothesis on economic determinants of the rates of transactions.  

A particularly important example is when calendar time effects are important.  If

the expected duration varies over the time of day then the time at which the duration

commences can be thought of as an independent variable.  This will be the case for the

transactions data to be analyzed in the next section since it is well known that the

frequency of transactions is higher near the open and the close of the market.  The

expected durations therefore can be decomposed into deterministic and stochastic

components.  Suppose that the deterministic effect of time can be formulated as a

multiplicative function so that the detrended or “daily seasonally adjusted” data can be

given by

(22) ~ / ( ; )x x ti i i= −φ θφ1

and the expected duration can be written as

(23) E x t x xi i i i i− − −=1 1 1 1( ) ( ; ) (~ ,.., ~ ; )φ θ ψ θφ ψ
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then the two sets of parameters can be estimated jointly using the likelihood specified

above.  In this case ψ i  is interpreted as the expected fraction above or below normal for

that time of day.

An alternative approach which was used in Engle and Russell(1995a,1995b) is to

initially “daily seasonally adjust” the durations by a regression of x on the spline functions

and then model the ratio of actual to fitted value as the daily seasonally adjusted series of

durations.  This procedure gives very similar results if there are sufficient data since the

regression is still a conditional expectation, even though the disturbances are

autocorrelated and heteroskedastic:

(24) E x t ti i i i( ) ( )− −= +1 1φ ξ .

6.  Modeling the Time Between Transactions of IBM Stock Using the

ACD Model.

6.1  Data Description

This section applies the ACD model to IBM transactions data.  Initially the focus

will be on the time intervals between trades from which the conditional intensity is a high

frequency measure of the quantity of transactions.  Subsequently models for the price

process will be considered.

The data were abstracted from the Trades, Orders Reports and Quotes (TORQ)

data set constructed by Joel Hasbrouck and the NYSE.  The data set contains detailed

information about each transaction occurring on the consolidated market during regular

trading hours over a 3 month period beginning November 1, 1990 and ending January 31,

19915.  In addition to information about bid and ask quote movements, the volume

associated with the transactions, and the transaction prices, there is a time stamp,

measured in seconds after midnight, reflecting the time at which the transaction occurred.

                                               

5 Some trades occurring during non-trading hours are not recorded.  See Hasbrouck Sofianos
and Sosebee(1993).
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Two days were deleted from the 63 trading days in the 3 month sample.  A halt in

IBM trading of just over an hour and 15 minutes occurred on Friday, November 23.  On

December 27th there was a one and a half hour delay in the opening.  After deleting these

two days there are a total of 58,942 limit and market orders executed at 52,405 unique

times.  In many cases there are multiple buyers or sellers involved in a trade, and trades

can have widely differing numbers of shares transferred.   These attributes of a transaction

time can be considered marks and can be modeled as such.  However in this paper, these

marks are not analyzed.  See Engle(1996) for an approach to modeling the marks and

times jointly and Russell(1996) for a joint model of transaction prices and event arrival

times.

The average volume corresponding to each time stamp is 1861 shares.  The

minimum time between events is 1 second and the maximum duration is 561 seconds or 9

minutes and 21 seconds.  The average duration between successive events for IBM

(ignoring the overnight waiting time) is 28.38 seconds with a standard deviation of 38.41.

Figure 1 is a plot of the histogram for the waiting times.  The solid line is the histogram

and the dashed line is the exponential distribution with the maximum likelihood estimate of

the parameter λ .  The waiting times do not appear to be exponential.  This does not

necessarily mean, however, that the waiting times are not conditionally distributed as an

exponential.

The ACD model is proposed as a model for intertemporally correlated event

arrival times.  To examine the dependence,  we calculate the autocorrelations and partial

autocorrelations in the waiting times between events.  Table 1 contains these

autocorrelations and partial autocorrelations after the overnight waiting times are

removed.  The autocorrelations and partial autocorrelations are far from zero and all the

signs are positive.  The Ljung-Box statistic is examined to formally test the null hypothesis

that the first 15 autocorrelations are 0.  The test statistic is distributed as a χ15
2

 with a 5%

critical value of 25.  The null is very easily rejected with a chi-squared statistic of 9466 and

a corresponding p-value .0000.  These long sets of positive autocorrelations are precisely

what one finds for autocorrelations of squared returns.  Interestingly, volatility clustering

and duration clustering exhibit definite similarities which will be developed below.
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6.2  Modeling Daily Seasonality and the Open

IBM is traded on several of the US exchanges.  These markets are open from 9:30

a.m. EST to 4:00 p.m. EST ; studies have found a seasonal pattern over the course of the

trading day6.  In addition, this paper will present evidence of periods that tend to be

relatively active with many traders making transactions and other periods with relatively

few transactions.  Figure 2 contains a plot of the expected time interval conditioned on the

time of day that the duration begins.  The expectation is calculated using a nonparametric

kernel estimator7.  The opening is very active with transactions occurring, on average,

every 10 seconds.  The middle of the day, around 1:00 in the afternoon, tends to have the

longest duration between transactions of just over 1 transaction every 35 seconds.

Activity picks up again prior to the close with transactions occurring once every 20

seconds, on average.

The extreme short durations around the open are partly a result of the opening

auction.  During the opening auction, the specialist sets a price to maximize the volume

transacted.  After the price is set and orders are executed, the transactions must be

recorded.  Once the open transactions are all recorded, non-opening transactions begin.

Because the open is sometimes delayed,  the first recorded transaction time of the day

varied from the first 34 seconds after 9:30 to later than 9:45. All we observe is the first

recorded opening trade and an unknown number of dependent trades that follow. A model

of the trading process would be contaminated by including opening trades, hence

transactions occurring in the first 20 minutes of the day (9:30-9:50) were deleted.  The

process for each day is then re-initialized using the average duration over the 10 minutes

prior to 10:00.  That is, each day starts fresh with the conditional expectation of the first

waiting time after 10:00 set equal to the average duration over the 10 minutes prior to

                                               

6 See, for example, Jain and Joh (1986), McInish and Wood (1991), or Bollerslev and
Domowitz (1993)

7 The SPLUS subroutine Supsmu with cross validation bandwidth selection.
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10:00.  This design also solves the problem of the carry over of transaction rates from the

close one day to the open on the following trading day.

Assuming that the daily seasonal factor ( )φ t i−1  can be approximated by a cubic

spline,  nodes were set on each hour.  Activity drops off quickly at the end of the day so

an additional node for added flexibility was used in the last half hour.  The constant in the

spline is identified by setting the mean of the predicted daily seasonal factor equal to the

observed sample mean.

6.3  Model Estimation

After all the adjustments to the data, there are 46,091 observations on IBM

transactions to be analyzed. Maximum likelihood estimation of the ACD model is

performed using the Berndt Hall Hall Hausman(1973) algorithm with numerical

derivatives.  The values used to initialize each day are presented in the appendix.  The

parameter estimates for the EACD(1,1) and the EACD(2,2) model are presented in table

2.  The parameters for the stochastic factor are all significant.  The sum of  the α i  and βi

is .99623 for the EACD(1,1) model and .99607 for the EACD(2,2) model indicating the

process has strong persistence as measured in transaction time.

While virtually all of the parameters for the daily seasonal factor are individually

insignificant, a likelihood ratio test rejects the null hypothesis of no seasonal factor.  The

test statistic has a χ15

2

 distribution with 5% critical value of 25.  The test statistics are

82.38 for the EACD(1,1) and 95.26 for the EACD(2,2).  Figure 3 is a plot of the seasonal

component for the EACD(2,2) model denoted by the relatively smooth heavy dashed line.

Although the scale makes it hard to see, the daily seasonal is approximately an inverted

“U” shape with the morning and close exhibiting the highest trading rates and a lull in

trading activity just after noon.  As expected, this daily seasonal factor is similar in general

features to the nonparametric estimate shown in figure 2.

Several characteristics of the data can now be examined.  First, consider the

intertemporal correlations of the “de-seasonalized” durations given by (22).   This series

should have a mean of approximately unity and should be free of any daily seasonality.

The autocorrelations and partial autocorrelations for this series are presented in table 1.
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The Ljung-Box statistic associated with these autocorrelations is over 8000 for both the

(1,1) and the (2,2) models8. This suggests that the large Ljung-Box statistic observed for

the raw durations in table 1 is not a result of the seasonal factor alone.  This observation is

supported by the large t-statistics observed for all models on the parameters α i  and βi

which are designed to capture this intertemporal autocorrelation.

The ACD process assumes that a particular stochastic transformation of the data is

i.i.d.  Testing this assumption provides a diagnostic check on the model.  The

“standardized” durations

(25) ( )
$ε

ψ φi
i

i i

x

t
=

−1

 ,

are tested for autocorrelation with the Ljung Box statistic with 15 lags.  For the

EACD(1,1) model, the Ljung-Box  is only 38.08 which is much less than the statistic for

the raw and seasonally adjusted durations, however it still exceeds the 5% critical value.

The Ljung-box for the EACD(2,2), however, reduces the Ljung-Box to 24.9 which is just

at the 5% critical value.  Of course the independence assumption in equation (8) implies

that higher order moments should also be independent.  The Ljung-Box statistic for the

square of the standardized series associated with the EACD(2,2) is 21.2.  Higher order

moments are also less than the critical value.  These statistics suggest that the model does

a good job of accounting for the intertemporal dependence in transaction arrival rates.

A new statistic is presented here to examine non-linear dependence between the

standardized durations and the past information set.  The seasonally adjusted durations are

divided into 23 bins which range from (0,0.1) to (1.9,2.0), and (2,3),(3,4), (4,5) and (5,∞)

omitting one bin at 1.  The standardized durations are then regressed on indicators for the

magnitude of the previous duration; if the standardized durations are indeed i.i.d. then

there should be no predictability in this regression.  The R2  of this regression is .003,

however because of the 46,000 observations this corresponds to an F statistic of 6.0 which

is significant at the .0001 level.   The rejection is due to the smallest and largest durations.

                                               

8 The test statistic does not vary much across the different distributions to be discussed or the

different mean specifications.  The test statistic is near 8000 for all the models estimated.
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The very smallest duration and the three largest duration cells all have negative t-statistics

exceeding 2.  This means that the expected durations from the linear model are on average

too large after the very shortest durations as well as the longest durations.  In a better

model, very short durations would have a bigger impact on decreasing expectations, while

long durations would have a reduced impact on lengthening durations.

Next, consider the exponential specification of ε.  One goodness of fit test is a

simple moment condition implied by the exponential distribution.  In particular, the

exponential distribution implies that the mean should equal the standard deviation.  The

mean of the standardized durations is unity by first order conditions while the standard

deviation is 1.18 for both the EACD(1,1) and EACD(2,2).

A simple test for the null of no excess dispersion is then based on the

statistic N
v

$σ
σ
ε
2 1−






  where $σε

2  is the sample variance of $ε , which should be 1 under the

null hypothesis.  σv  is the standard deviation of ( )ε i −1
2
 which is equal to 8  under the

exponential null hypothesis.  A straightforward application of a central limit theorem

implies this statistic should have a limiting normal distribution under the null with 5%

critical value of 1.645.  The null of the standard deviation equal to unity is easily rejected

with a t-statistics of 30.55 and 30.28 for the EACD(1,1) and EACD(2,2) models

respectively.  This is strong evidence against the exponential distribution assumption.

Viewing the EACD as a QMLE, we now seek the source of mispecification in ε.

Equations (8) and (9) reveal that the empirical distribution of the residual 
xi

i iφ ψ






  can be

used to obtain estimates of the baseline hazard ( )λ 0 t .  There are numerous suggestions in

the duration literature to calculate the baseline hazard; here a simple semiparametric

estimate of the base line hazard using 5% quantiles will be used.  Letting ei denote the

empirical residual defining the upper end of the ith 5% quantile the estimator can be written

as:
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This can be viewed as a kth nearest neighbor semiparametric estimator of the baseline

hazard.

Figure 4 presents a plot the semiparametric estimate of the baseline hazard using

the EACD(2,2) standardized series.  The dashed line represents the exponential hazard

and the solid line is the estimate for the empirical hazard.  Each dot on the solid line is the

estimated hazard for the ith quantile plotted against the midpoint of the ith quantile.  These

points were then smoothed using a cubic spline.  The generally downward sloping hazard

is inconsistent with the exponential density.  Together, the non-parametric hazard with the

parametric conditional mean provide a complete description of the point process.

Alternatively, a parametric hazard can be estimated.  The hazard associated with

the Weibull distribution is similar in shape to the semi-parametric estimate of the baseline

hazard. If γ is less than unity, then the hazard will be monotonically decreasing as seen in

Figure 4.  Table 3 presents the parameter estimates for the Weibull ACD, or WACD(1,1)

and the WACD(2,2) models.  The parameter estimate for γ  is .9125 and .9126 for the

WACD(1,1) and WACD(2,2) models respectively.  The Exponential model is easily

rejected in favor of the Weibull with a t-statistic associated with the null hypothesis γ = 1

of approximately 25.5 for both models.  The estimates of α i  and βi are very similar to

those of the exponential model. Again, the sum of α i  and βi is near unity at .9948 and

.9953.  Although not presented, the graph of the estimated seasonal factor is very similar

to that estimated under the Exponential.

Given the similarity in the parameters for the stochastic factor, it is not surprising

to find that the standardized series exhibit similar autocovariances and Ljung-Box

statistics.  If the Weibull specification is correct, then raising the residuals to the power γ

should produce a series that is still i.i.d, and is also distributed as a unit exponential.

Applying the same set of diagnostics as before to the transformed Weibull standardized

series

(27) ( )
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γ
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yields Ljung-Box statistics of 39.77 and 25.32 for the WACD(1,1) and WACD(2,2)

models respectively.  Again these are a great improvement over the Ljung-Box associated

with the original series and very similar to those under the exponential distribution.  The

Ljung-Box for the square of the standardized series is 25.95 for the WACD(2,2) model.

The standard deviation of these series has been reduced to 1.07 and 1.06 for the

WACD(1,1) and WACD (2,2) models respectively.  The test for excess dispersion the of

the transformed series in equation (27) yields t-statistics of 11.24 and 11.14 for the

WACD(1,1) and WACD(2,2) respectively suggesting there are still problems with the

distributional assumptions.

There are several other suggestions in the literature to assess the goodness of fit of

the Weibull series9.  The WACD model implies that the survivor function is given by

(28) ( )F x
x
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It follows that
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so that the negative log of the empirical survivor function should  be linearly related to the

transformed standardized residuals with a slope of unity. Figure 5 presents this plot. The

empirical survivor function has too much weight in the right tail.  In particular, there are

too many residual values greater than 2.5 or, equivalently, approximately the last decile.

This is consistent with the variance tests above that suggested excess dispersion in the

residual.  Perhaps another parametric distribution would be better suited or we could settle

on the semiparametric estimate.

Figure 3 contains a plot of the one-step ahead forecast of the waiting times to the

next transaction for a randomly selected day (November 20, 1990).  The heavy, relatively

smooth dashed line, is the estimated seasonal factor.  The heavy solid line is the one-step

forecast obtained by taking the product of the stochastic and daily seasonals.  The

                                               

9 See Kalbfleish and Prentice for a discussion.
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observed durations are denoted by the light dashed line.  The forecasts exhibit large

deviations from the daily seasonal.  For example, just after 1:00 the one-step forecast

predicts waiting times in excess of 60 seconds while the daily seasonal factor alone is less

than 40.  Just after 10:00, the forecast drops to near 5 seconds while the seasonal factor

alone is more than 30.

7.  Some Economics of Market Microstructure

It is natural to ask is why there is stochastic clustering of transaction arrival times

since in simple rational expectation and representative agent models, even news will not

generate trades.  Several explanations are found in the rapidly growing body of literature

that examines market microstructure of financial markets.  See O’Hara(1995) for an

excellent survey.  This literature often partitions traders into two or more types: informed

traders who are assumed to posses information not publicly available, and liquidity traders

or those not trading based on a superior information set.  Often it is assumed that the

composition of the traders is known although individual agents are not identifiable. In a

rational expectations setting, the specialist will update the bid and ask quotes in response

to order flow characteristics as he infers the new information.

Easley and O’Hara(1992) make the common assumption that liquidity traders

arrive randomly according to a Poisson distribution.  Informed traders, however, will enter

the market only after observing a private, potentially noisy signal.  In a rational

expectations setting the specialist knows this and will slowly learn of the private

information by watching order flow and hence adjust prices accordingly.  Informed traders

will seek to trade as long as their information has value.  Hence, we should see clustering

of trading following an information event because of the increased numbers of informed

traders.

Admati and Pfleiderer(1988)(1989) develop a model where in addition to informed

traders there are two types of uniformed traders.  The model supposes a sequence of batch

auctions over the course of the trading day with private information lasting a single period.
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The “discretionary” liquidity traders have some choice over the time at which they

transact, while the “non-discretionary” liquidity traders are again assumed to arrive in a

random fashion.  Because the bid ask spread in the model is inversely related to the

discretionary trader volume, it is optimal for discretionary liquidity traders to lump their

trades together in the same batch auction.  The informed traders would also choose to

trade at this time but the number of informed traders is exogenous so the increases in

volume are associated with increased numbers of liquidity traders.

To investigate whether the episodes of high transaction intensity are due to

liquidity traders or informed traders, it is necessary to examine prices and bid ask spreads

as well as transaction times which we do in the next section.  In the rational expectations

model of Admati and Pfleiderer, there is a constant amount of private information revealed

each period so the variability of the price should be independent of volume.  In Easley and

O’Hara,  increased numbers of transactions are due to information events and the naturally

increased numbers of informed traders.  As a consequence, bid ask spreads widen and

price volatility increases.

8.  An ACD Model for Price Movements and Some Tests of Market

Microstructure

The models estimated above defined an event arrival using transaction arrival

times.  Alternatively, events can be defined by a subset of the transaction arrival times with

specific characteristics or marks.  For example, to focus on the price process, consider

selecting only the points for which the price has changed.  An event arrival time is now

characterized not just by a transaction occurring, but a transaction occurring at a new

price.

The point process literature calls the price event arrival times a thinned point

process.  Because the price marks themselves are presumably autocorrelated the process

of selecting the subsample is called dependent thinning.  While theorems exist relating the

intensity function of the thinned point process to that of the original sample they generally

assume that the original sample is a time homogeneous Poisson process.
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The ACD model can now be applied to these new event arrival times. Clearly, this

no longer models the arrival rate of traders but rather how quickly the price is changing.

The intensity function is now a measure of the instantaneous probability of a price

movement called a “price intensity”.  Similarly, the waiting times between these events are

called “price durations”.  This is intuitively a model for the inverse of volatility; in the next

section this relation is made precise.

Define the midpoint of the bid-ask spread or “midprice” to be the current price.

This eliminates the problem of “bid-ask bounce” although price discreteness remains a

complication.  Define the midprice at time ti as

(30) p
bid ask

i
i i= +

2
.

Bidi and aski are the current bid and ask prices associated with transaction time ti.

Examining the IBM quotes reveals that sometimes a bid or ask quote will move by an

1/8th for only a few transactions and then return to its previous level. This might not be

considered a price change as it might be a recording or quoting error, or just reflect

inventory control or a single particularly large transaction that temporally moves the price.

To avoid counting these minor, potentially transitory price movements, define a price

movement as any movement in the midprice greater than or equal to some constant c.  In

addition, an attempt was made to make the thinning robust to errant quotes by requiring

two consecutive midprice values to have moved by at least the threshold value.

The median spread for IBM is .25, or 2 ticks.  Occasionally the spread is more

than a dollar, and the minimum recorded spread is 1 tick at .125.  A value of c = .25 is

used so that altogether the bid or ask quotes must move by a total of 4 ticks to initiate a

new price duration.

The sample size is reduced to 1347 after thinning or about 3% of the original

sample.  The mean price duration is just under 15 minutes at 860 seconds and there is an

average of 25.5 price events per day. The minimum price duration is 1 second while the

maximum is almost 3 hours at 10,609 seconds.  There is excess dispersion relative to the

exponential with a standard deviation 1.43 times the mean.  The Ljung-Box statistic
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associated with the price durations is 72.  All autocorrelations are positive indicating

clustering of price events.

Volatility is also known to exhibit intradaily patterns so the daily seasonal factor

model specification with splines was used again.  For many of the days no price events

were recorded before 10:00.  The initial value for these days was set equal to 1.0.  A list

of the initial conditions for the price event model is given in the appendix.

The (2,2) model specification is required to whiten the standardized series.

Estimates of the EACD(2,2) model and the WACD(2,2) model are presented in table 4.

The Ljung-Box statistic associated with the de-seasonalized series increases slightly to

104.  The sum of α i  and βi  is .9191 and .9043 for the exponential and Weibull models

respectively.  This is much less than for the transaction event models.  It is difficult

however to compare the persistence in the transaction and price models because the

transaction durations are much shorter on average than the price durations.  The Weibull

parameter is again significantly less than 1 indicating a downward sloping hazard.

Although none of the daily seasonal factors are individually significant, the value of

the likelihood ratio test for the EACD(2,2) model is 157.9 with a critical value of 25

suggesting the seasonal factor should be included.  Plots of the daily seasonal factors for

the EACD(2,2) and WACD(2,2) models are presented in figure 6.  As expected,  the price

durations are shortest in the morning and just prior to the close with a noticeable lull

between 12:00 and 1:00.

The Ljung-Box has been reduced to approximately 7.05 for the exponential and

6.35 for Weibull.  Again there is evidence of remaining excess dispersion for the

exponential model with a test statistic of 7.93.  Figure 7 gives the empirical estimate of the

hazard which is essentially monotonic and downward sloping which is consistent with the

Weibull hazard function.  This time the moment condition for excess dispersion is not

rejected for the Weibull standardized series with a test statistic of -.14.  Figure 8 presents

the log-linear plot of the empirical survivor function against the standardized duration.

Again, the solid line should be approximately linear with slope equal to unity (represented

by the dashed line) if the true distribution were Weibull.  The plot also suggests that the

Weibull distribution fits the price duration data well.
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Before testing the market microstructure hypotheses, we examine the relationship

of the price intensities to standard measures of volatility.

8.1  A Relationship Between the Price Intensity and Volatility.

From equation (1), the price intensity function characterizes the probability that  a

price event will occur in the next instant, conditional on the history of price events.  More

precisely, the probability that the price changes by c in an interval ∆t  is

( ) ( )λ t t t t o ti− +1 0,..., ∆ ∆ , and otherwise there is no change.  This can be viewed as a

binomial price process where the time between events is random as well as the direction of

change.  Let the instantaneous volatility be defined as:
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Substituting and taking limits, the smaller terms vanish yielding the expectation of the

conditional volatility per second in the next instant:
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Since the intensity function is defined for all t>t0 we have a continuous picture of volatility

over the trading day.

A plot of the instantaneous volatility over three consecutive days (January 21, 22,

and 23) is given in the top half of figure 9.  These days were particularly volatile so they

might be interesting to examine.  The intensities were constructed using the EACD(2,2)

model with nonparametric hazard.  Because the units of volatility per second are not very

intuitive the volatility was annualized as if the volatility per second were constant for all

trading hours over the course of a year10.   The spikes in the function indicate event arrival

times.  The downward sloping nonparametric hazard function, that was presented in figure

7 implies that we are most likely to observe a price event immediately following a price

                                               

10 (252 trading days/year)*(6.5 hours/day)*(3600 seconds/hour)=5,896,800 trading

seconds/year
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event.  Focusing on the general level rather than the steep descent and upward spike we

see different patterns over the course of each day.  The first day plotted (910121) exhibits

high volatility in the morning and just prior to close.  The volatility for day 2 (910122)

does not exhibit the large swings and clumping of volatility that day 1 does.  Day 3

(910123) has four bursts of volatility over the course of the day:  two in the morning, one

around mid-day and finally, another burst near the close.

At each point in time a volatility forecast can be computed.  Although this can be

computed analytically in event time, a closed form solution does not exist in calendar time

but the forecast can be computed by simulation.  These forecasts will not have the spikes

that the instantaneous expectations have since the conditioning information becomes less

valuable as the forecast horizon increases.

8.2  Testing Market Microstructure Hypotheses About Transaction Clustering.

The bottom of figure 9 contains a plot of the transaction intensity over the course

of the same three days used for the instantaneous volatility.  The hazards were also

calculated using the EACD(2,2) model with nonparametric hazards.  Casual examination

suggests a correlation between the two intensity functions but it is far from perfect as

there are episodes of high transaction intensity without price movement.

The Easley and O’Hara model predicts that the number of transactions would

influence the price process through information based clustering of transactions.  The

Admati and Pfleiderer model predicts that the number of transactions would have no

impact on the price intensity.  While casual evidence may be ambiguous, these hypotheses

can now be statistically tested.

A measure of the intensity of trading is constructed using the number of

transactions per second over each price duration. The daily seasonality was then removed

by dividing each value by it’s conditional mean calculated using the same spline function as

used for the transaction duration models.  This procedure introduces no biases into the

test statistic as it recognizes that the seasonal pattern of transactions and prices may not be

the same.  The seasonal splines in the price durations are estimated jointly as before.
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The price duration EACD(2,2) model is used as the base model with robust

standard errors to insulate the results from the validity of the Weibull parameterization.

Model 1 in table 5 includes the past transaction rate which is statistically significantly

negative with a robust t-statistic of  -12.65.  The negative sign means that the expected

price durations are shorter, and equivalently the volatility is higher, following periods of

high transaction rates.  This is consistent with the Easley and O’Hara model.

Further evidence can be found using volume per transaction and spread as these

are also thought to carry information about the existence of private information.  For a

survey of the volume price relationship see Karpoff(1987) or Stickel and

Verrecchia(1993).  Starting with Glosten and Milgrom(1985), asymmetric information

models generally predict that spreads tend to become wider as the probability increases of

informed agent trading.  For an interesting empirical investigation see Hasbrouck(1991).

Model 2 adds the average volume per transaction observed over the previous price

duration and the percent bid ask spread at the end of the last duration, each corrected for

daily seasonality using the same procedure as before. The coefficient on the number of

transactions per second is reduced slightly but is still very significant and negative.  The

spread and volume are  also highly significant with robust t-statistics of -15.68 and -4.5.

These strong results further support the Gosten and Milgrom as well as Easley and

O’Hara conjecture that information based trading predicts higher volatilities.

Finally, consider the possibility that clustering of trading may be occurring at

different times for different reasons.  Perhaps there are times that transaction clustering is

due to information based trading and other times transaction clustering is due to liquidity

based trading. If the specialist can distinguish these periods, he will set narrow spreads

when the fraction of informed traders is small and wide spreads when the fraction of

informed traders is large.  This suggests using the spread to break up liquidity clustering

and information based clustering.

Model 3 allows the effect of the number of transactions in a “wide spread” state to

be different from the effects in a “narrow spread” state.  If the heterogeneous effect is

correct we would expect the coefficient on the “wide spread” number of transactions to be

negative reflecting more rapid price movements when the fraction of informed traders is
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high.  The coefficient on the number of transactions per second in the “narrow spread”

state should be insignificant according to Admatti and Pfleiderer.  The Admatti Pfleiderer

model is formulated in an environment where informed traders always exist.  Interpreting

the Admatti Pfleiderer results in a more general context where private information does

not always exist, we might expect the coefficient on the “narrow spread” state to be

positive reflecting a very liquid market.  That is, in absence of informed traders, the

market is probably more liquid when trading activity is higher.

The coefficient on the number of transactions per second in the “wide spread”

state is -.0365 with a robust t-statistic of -17.89 while the coefficient in the “small spread”

state is .0026 with a robust t-statistic of .12.  If the spread is a good measure of the

fraction of informed traders, then these results suggest the effect of transaction rates on

volatility varies as a function of the fraction of traders that are informed.  The effect of the

transaction frequency under narrow spreads is statistically insignificant so Model 4

contains the volume, spread, and transaction frequency in only the “wide spread” state.

These results shed light on the causes of transactions  clustering. The price tends

to move quickly following high transaction rates if the spread is relatively wide which is

interpreted as when informed traders are likely to be active. The price tends to move less

quickly or is perhaps unaffected following higher transaction rates when spreads are

narrow  which is when liquidity traders are inferred to be dominant.  This suggests that

both liquidity and information based clustering of transaction rates occurs.

9.  Conclusions

This paper proposed a new technique for modeling irregularly spaced time series

data using a new class of self-exciting point process models that seem particularly well

suited for financial data.  The model can be interpreted in the class of time deformation

models that are becoming popular in finance.  Asymptotic results are extracted from the

ARCH-GARCH literature to obtain QMLE results for the exponential version of the ACD

model.
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The ACD model did a very good job of reducing excessively large Ljung-Box

statistics associated with waiting times between transaction events to statistically

insignificant, or marginally significant levels.  Excess dispersion tests suggest that neither

the Weibull nor the exponential versions of the ACD model may be fully appropriate

parameterizations for transaction event arrival times.  These models are presented as a

useful starting point along with diagnostics and robust standard errors.

A model for the price process is estimated by selecting a subsample of the data

which carries particular information about price movements.  The Weibull model appears

to fit this distribution well as it easily passes both the intertemporal dependence and excess

dispersion diagnostic tests.  This model can be interpreted as a model for instantaneous

volatility.  It is interesting because the model provides a continuous picture of volatility

over the course of the day.  The price model is used to test hypotheses about the source of

clustering of transaction times.  Evidence is presented that clustering of transactions occur

both due to bunching of informed traders and, when spreads are small, also to clustering

of liquidity traders.

The avenues for future research stretch in several directions.  Recognizing that the

underlying price process specified in Section 8 is essentially a binomial tree with random

spacings, implications for derivative pricing and term structure of interest rates seem

direct.  Joint modeling of volumes, transaction prices and quotes would give better

understanding of the fundamental mechanisms of NYSE markets including time variation

in liquidity. Additional insight will come from joint modeling of more than one asset where

the second could be a related stock or a derivative with duration spillovers.



31

 Table 1.  Autocorrelations and Partial Autocorrelations of Trading Intervals

Raw Durations De-Seasonalized Durations

acf pacf acf pacf

lag 1 .155 .155 .144 .144

lag 2 .132 .110 .122 .103

lag 3 .126 .094 .113 .085

lag 4 .125 .086 .110 .076

lag 5 .122 .075 .111 .072

lag 6 .108 .056 .098 .053

lag 7 .118 .065 .109 .063

lag 8 .123 .066 .113 .063

lag 9 .116 .054 .102 .047

lag 10 .104 .038 .095 .038

lag 11 .106 .041 .098 .042

lag 12 .106 .039 .095 .036

lag 13 .105 .037 .093 .033

lag 14 .099 .030 .089 .029

lag 15 .097 .028 .088 .028

Ljung-Box(15) = 9466.43

Sample Size=46091

Ljung-Box(15) = 7807.41

Sample Size=46091
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Table 2:  Parameter Estimates for the EACD Transaction Models

                EACD(1,1) EACD(2,2)

Estimate t-Statistic Robust
t-Statistic

Estimate t-Statistic Robust
t-Statistic

ω .00568 11.94 9.16 .00584 9.17 6.94

α1 .06306 41.61 33.70 .08295 19.86 15.30

α2 -.01608 -2.75 -2.05

β1 .93317 574.66 447.31 .79948 12.07 9.44

β2 .12971 2.09 1.63
c11 28.402 - - 26.493 - -
d11 -8.283 -.80 -.59 -1.962 -.19 -.14
d21 17.365 .81 .58 10.307 .49 .36
d22 -21.502 -1.55 -1.14 -20.944 -1.54 -1.12
d23 -8.167 -.56 -.41 -6.102 -.42 -.31
d24 -39.286 -2.62 -1.74 -37.202 -2.52 -1.68
d25 -25.132 -1.77 -1.35 -26.129 -1.88 -1.42
d26 -39.524 -1.13 -.8 -46.359 -1.33 -.95
d27 -29.110 -.61 -.44 -32.463 -.68 -.49
d31 -7.222 -.59 -.42 -4.520 -.38 -.27
d32 16.168 1.81 1.33 15.487 1.76 1.28
d33 5.274 .55 .39 3.631 .38 .27
d34 23.165 2.41 1.64 22.426 2.38 1.61
d35 17.604 1.89 1.45 18.267 2.00 1.52
d36 44.198 .92 .66 54.330 1.13 .81
d37 51.114 .72 .48 54.699 .77 .51

Statistics from Residuals
Mean .9999 Mean .9994

Std Dev 1.1843 Std Dev 1.1828
Ljung-Box 38.0864 Ljung-Box 24.9446

Excess Disp.
Test Statistic 30.55

Excess Disp.
Test Statistic 30.28
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 where 

where Ij is the indicator variable for the jth segment of the spline {Ij=1 if kj-1≤ti-1<kj, =0 otherwise}.
For j>1 c  and di, j 1, j  are restricted by the usual differentiability conditions.

c11 is normalized by restricting the unconditional mean of the seasonal factor to equal the observed sample
mean.
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Table 3:  Parameter Estimates for the WACD Transaction Models

                WACD(1,1) WACD(2,2)

Estimate t-Statistic Estimate t-Statistic
ω .00592 10.20 .00616 7.68

α1 .06262 34.45 .08321 16.56

α2 -.01601 -2.21

β1 .93221 469.57 .79768 9.59

β2 .13046 1.67

γ .91250 19.28 (Ho:
γ=1)

.91263 24.82 (Ho: γ=1)

c11 27.142 - 25.682 -
d11 -5.163 -.42 -.603 -.05
d21 13.506 .53 8.529 .34
d22 -19.359 -1.16 -19.866 -1.21
d23 -4.574 -.26 -3.949 -.22
d24 -36.359 -1.99 -35.370 -1.97
d25 -25.047 -1.45 -26.041 -1.54
d26 -46.955 -1.08 -51.634 -1.20
d27 -35.845 -.60 -37.643 -.63
d31 -5.691 -.39 -3.69 -.26
d32 14.493 1.34 14.545 1.36
d33 2.572 .22 1.988 .17
d34 21.818 1.87 21.562 1.88
d35 17.826 1.57 18.465 1.65
d36 54.853 .92 61.749 1.04
d37 59.144 .66 61.186 .69

Statistics from Residuals
Mean 1.0002 Mean 1.0003

Std Dev 1.0715 Std Dev 1.0709
Ljung-Box 39.7715 Ljung-Box 25.3202

Excess Disp.
Test Statistic 11.24

Excess Disp.
Test Statistic 11.14
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 where 

where Ij is the indicator variable for the jth segment of the spline {Ij=1 if kj-1≤ti-1<kj, =0 otherwise}.
For j>1 c  and di, j 1, j  are restricted by the usual differentiability conditions.

c11 is normalized by restricting the unconditional mean of the seasonal factor to equal the observed sample
mean.
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Table 4:  Parameter Estimates for the Price Models

                EACD(2,2) WACD(2,2)

Estimate t-Statistic Robust
t-Statistic

Estimate t-Statistic

ω .1150 4.95 3.13 .1250 3.31

α1 .0703 3.66 2.30 .0745 2.36

α2 .1983 7.59 5.96 .2180 4.94

β1 .1520 2.51 1.55 .1246 1.33

β2 .4985 8.76 5.28 .4872 5.53

γ .7650 12.40 (Ho γ=1)
c11 794.739 - - 763.080 - -
d11 476.460 .42 .25 459.687 .26
d21 -195.196 -.08 -.04 -101.911 -.02
d22 275.513 .21 .10 261.194 .12
d23 238.016 .15 .08 524.297 .21
d24 -609.202 -.37 -.24 -668.336 -.24
d25 16.744 .01 .01 86.048 .03
d26 -264.385 -.09 -.06 -54.562 -.01
d27 -3379.156 -.90 -1.15 -3807.942 -.57
d31 -69.153 -.05 -.02 -127.715 -.06
d32 -67.975 -.08 -.03 -76.041 -.05
d33 -319.247 -.29 -.18 -485.941 -.28
d34 437.515 .43 .28 478.477 .28
d35 -106.821 -.12 -.09 -180.527 -.12
d36 1176.874 .29 .22 1089.532 .15
d37 2788.492 .54 .77 3031.447 .33

Statistics from Residuals
Mean .9999 Mean .9999

Std Dev 1.2696 Std Dev .9943
Ljung-Box 7.05 Ljung-Box 6.35

Excess Disp.
Test Statistic  7.93

Excess Disp.
Test Statistic -.14
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 where 

where Ij is the indicator variable for the jth segment of the spline {Ij=1 if kj-1≤ti-1<kj, =0 otherwise}.
For j>1 c  and di, j 1, j  are restricted by the usual differentiability conditions.

c11 is normalized by restricting the unconditional mean of the seasonal factor to equal the observed sample
mean.
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Table 5:  Price Model Estimates with Robust t-Statistics

Model 1 Model 2 Model 3 Model 4
Parameter

ω .2107
(6.14)

.3027
(18.22)

.2630
(12.79)

.2647
(22.69)

α1 .0457
(2.60)

.0507
(2.24)

.0527
(2.38)

.0531
(2.74)

α2 .1731
(5.94)

.1578
(5.19)

.1492
(4.77)

.1503
(4.82)

β1 .0769
(1.00)

.1646
(1.61)

.2007
(1.99)

.1968
(2.22)

β2 .5609
(8.07)

.4600
(5.16)

.4409
(4.76)

.4427
(5.11)

#Trans/Sec -.0440
(-12.65)

-.0359
(-13.40)

Spread -.0782
(-15.68)

-.0741
(-21.58)

-.0740
(-21.19)

Volume/Trans -.0041
(-4.58)

-.0043
(-9.14)

-.0043
(-9.67)

#Trans/Sec
(Wide Spread)

-.0365
(-17.89)

-.0364
(-18.44)

#Trans/Sec
(Narrow Spread)

.0026
(.12)
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Figure 1:  Histogram of Transaction Durations
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Figure 2:  Nonparametric Estimate of Seasonal Pattern for Transaction
Durations
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Figure 3:  Estimate of Seasonal Factor and One-Step forecast for
Transaction Durations
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Figure 4:  Semiparametric Estimate of Baseline Hazard for Transaction
Durations
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Figure 5:  Plot of -Log Empirical Survivor for Weibull Transaction
Model
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 Figure 6:  Estimate of Seasonal Factor for Price Durations
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Figure 7:  Semiparametric Estimate of Baseline Hazard for Price
Durations
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Figure 8:  -Log Empirical Survivor for Weibull Price Model
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Figure 9:  Forecast of Instantaneous Volatility(Top) and Transaction
Intensity (Bottom)
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Appendix
Values Used to Initialize ACD Process for Each Day

Date Transaction
Model

Price
Model

Date Transaction
Model

Price
Model

 901101 1.276 1.0  901218 .810 1.190

 901102 1.093 1.0  901219 .927 1.0

 901105 1.410 1.0  901220 .536 .434

 901106 .648 .530  901221 .992 1.0

 901107 1.456 1.0  901224 1.208 .588

 901108 1.915 1.44  901226 6.471 .880

 901109 1.056 1.0  901228 1.284 .416

 901112 .563 1.0  901231 1.691 1.0

 901113 .529 .273 910102 .575 .483

 901114 .595 1.0  910103 .656 1.162

 901115 .871 1.0  910104 1.121 1.0

 901116 .861 4.715  910107 .940 1.0

 901119 1.005 1.0  910108 .589 .633

 901120 1.315 1.0  910109 .413 .413

 901121 .846 1.0  910110 .563 1.0

 901126 .900 3.269  910111 1.203 1.0

 901127 1.557 1.0  910114 .948 .277

 901128 1.058 .537  910115 .921 1.0

 901129 .944 .421  910116 1.300 .574

 901130 .859 1.0  910117 .199 .155

 901203 1.545 2.138  910118 .487 1.0

 901204 1.408 1.0  910121 .586 .037

 901205 .763 1.687  910122 .498 .392

 901206 .335 2.281  910123 .7531 1.0

 901207 .511 .268  910124 .868 1.0

 901210 .712 1.0  910125 .502 .346

 901211 .976 1.0  910128 .240 .152

 901212 .968 1.0  910129 .578 1.0

 901213 .772 2.242  910130 1.197 1.456

 901214 1.442 1.0  910131 .593 1.0

 901217 1.136 .588
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