INVESTMENT FINANCE V ECF5103

Definition

Rate of return P = P,/(1+r) Discrete
(one period)

. P1

re,r=—-1
Po

T

Price relative

P1=Po," continuous

ie., r= log{ﬂj
it

Adjustments for changes in the basis of quotation.
Dividends
e Add back cash dividend on date share is quoted XD
e Ignores - XD date is before cash is paid to shareholders
¢ Income tax on dividends
Rights Issues
Adjustment ignores
e Income tax issues
e Time value of delayed cash subscription

e Option value of delayed subscription

Discrete v. Continuous

Time Price Discrete ROR Cont. ROR
t=o Pt=1 * *
1 2 +100% +69.3%
2 1 - 50% -69.3%
TOTAL + 50%
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Discrete ROR
- Biased (upwards) Estimate of Total ROR

- Is greater than continuous ROR

- Bias depends on variance of prices in sub periods

- Why biased? because

Pl—P0+P2—P1 S P2-Po
Po P1 Po

Continuous ROR

- Unbiased estimate because total ROR

Ln (P1) +Ln (P2) = ln(ﬂxp—z)
(Po) Pl Po Pl

_ .2
Po

Changes in Basis of Quotation
- Dividends Cum Div (with Div)

Ex Div (without Div)

- Capitalisation Changes
- Rights Issues
- Bonus Share Issues
- Share Splits

- Returns of Capital, etc.
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- Need P1 on a Comparable Basis with Po!

P1* =Po (1+r)

Where P1*=P1 + ADJ

- Conventional adjustments (for changes in basis of share price quotation):

ADJ = CASH Div. AMT - (dividends)

ADJ = A (XR-CASH) - (Rights Bonus Issues and Share Splits and Consolidations
B

- Derivation of adjustment ADJ = %(XR — CASH)

A:B at Cash = issue terms

(EG: 2:5 at $1.25)

XR = Traded value of shares
EX RIGHTS

CR = What shares would have
traded for were they

CUM RIGHTS

Investment Outlay =  Portfolio Worth
B(CR) + A(CASH) = (A+B) XR
ADJ = CR-XR
now CR = (A+B)XR-A(CASH)B

ie., ADJ = as above -XR

= (A+B)XR-A(CASH)-B(XR)/B
and ADJ = A(XR-CASH)
B
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Example
Swan Tele 2-5 Rights Issue Dec 2008 XR Price = $1.20
Cash = .85

Assume last Nov was $1.30

Q. what was ROR Nov 30 to Dec 31?

P1+ ADJ 1
Po

ROR =

ADJ =2/5(1.20-.85) = .14

1.20+.14

i.e., ROR =
1.30

= 3.08% (Discrete)

Bonus issue)
) NO CASH PAYABLE
Share split)

FAMA - THE BEHAVIOUR OF STOCK MARKET RETURNS

THE MEAN

E(7)= Y P(x) (1)

Discrete

Random variable

The mean of a continuous random variable

E(x)= ij(x)dx (2)

Standard deviation of a discrete random variable

Variance = ¢°(¥) = E[¥ - E()?)]2 =>[%- E()?)]ZP(x) (3)
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The variance of a continuous random variable

o*(%) = E([7 - EF)]) = [[7 - E()] P(F)dx @)

Standard deviation

o(%)= /o (7) (5)

Characterisation of Normal Distributions by their Means and Standard Deviations
For any normally distributed random variable, the probability that any drawing is within

one standard deviation of the mean, i.e., in the interval

~

E<(X)-o(x) < x<E(X)+0(%)

is .6826

The possibility that the random drawing is in the interval

E(%)-20(3) < x < B(X) +20(3)
1s .9550

Equivalently, for any normally distributed random variable ~, the transformed variable

has the unit normal distribution with mean equal to 0 and standard deviation equal to 1.
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Unit Normal Distribution

Fat-Tailed Distribution

A reference to the tendency of many financial instrument price and return distributions to hawve more observations in the tails and to be thinner in the midrange than
normal distribution. Assets prone to price jumps tend to exhibit fattailed distributions. See etz Lo Lt fEiagram) Aol Laition

Probability The Shape of a Fat-Tailed Distribution

Mormal
Distribution

Fat-Tailed
Distribution

Underlying Price

Sample mean

X=>2 (6)

i=l1

—

The sample variance is

az(x):ZT:(xi—x)z/(T—l) (7

i=1

Sample variance = s(x) = +/s”(x) 8)

DEA/ECF5103/1ect3.Doc/6 Lecture 3
12/08/2008



Testing for Normality: The Studentised Range

A useful statistic for judging whether the distribution that generated a sample is normal is

the studentised sample.

This is

Max(xi) — Min( xi
SR = ( .S)’(x) (xi) 9)

The SR is the maximum minus the minimum, measured in units of single standard

deviation.

See Fama's evidence for US stocks.

TABLE 1.2
Frequency Distributions for Daily Returns on Dow-Jones Industrials
INTERVALS INTERVALS
R - 1.0s(R) = A= 158 < A - 2.0:0R] <
R <R - .54 A< R-10:R) R <R- 15481 _ _ _ _
and and 5 and AR <R-2lR) A<A-%3lA R < R- 4R R < R-5sR1
A - 5 < R+ BelR) < A+ 1.0sR1 < A3 1.50R) < _and _and and and
R<A+ Sl A <R+ 107 A< A+ 18R R <A+ 20:R] A >R+ 2R R > R+ 3R} A>R+asifl A > R+ 5elA1
Expected  Actual Expected  Actusl Expected  Actual  Expected  Actual Expected  Actual Expected Actual Expected  Actual Expected  Actual
T no. no. no. ne, no. no. no. na, no. no, no. no. no. no, no. no
i1l (2) 3 (a) 15) [t 7 18 -] o un [EF] 13 4 (151 (el - 0n
Allied Chemical 1,223 468.5 562 3665 349 224.8 163 107.7 94 555 55 33 1% 08 4 0007* 2
Alcos 1,180 4558 521 38566 343 8.7 172 104.8 85 54.1 ] 3z 7 07 [ 0007 0
American Can 1218 486.9 602 265.1 336 2241 157 1074 62 §5.5 62 13 13 08 6 0007 3
ATET 1,219 486.9 710 365.1 285 2241 131 107.4 a2 555 51 13 17 08 9 0007 6
Amarican Tobacco 1283 4914 692 3844 an 2358 138 130 3 S84 69 35 0 08 7 0008 4
Anaconds 1,193 456.9 513 3674 3n 219.3 204 1081 88 54.3 57 3.2 8 08 1 0007 o
Bethleher Steel 1,200 4536 575 3695 [k 307 2206 180 1057 76 54.8 62 3.2 18 08 4 0007 1
Chrysler 1,692 648.0 736 506.9 483 3110 268 149.1 7 17.0 87 46 16 At 4 0010 1
Du Pont 1,243 476.1 539 a72.4 363 2285 195 108.5 a0 56.5 56 34 8 08 3 0007 1
Eastman Kodak 1,238 474.2 546 3709 ars 22758 162 108.1 B85 56.3 66 3.3 13 08 2 0007 2
Genersl Electric 1,693 648 4 784 £07.2 479 3112 222 149.2 111 770 97 46 22 i 5 0010 1
General Foods 1408 539.3 632 ans a23 258.8 194 1240 84 64.1 76 38 2 09 3 o008 1
General Moters 1,446 5518 682 433.2 296 265.8 203 1274 103 65.8 62 39 13 08 ] 0009 3
Goodyear 1,162 4450 539 348.1 a3l 213.6 164 1024 n 5239 &7 3 10 07 a 0007 2z
International
Harvester 1,200 459.6 529 3595 385 220.6 1@z , 1087 61 54.6 63 3z 15 08 4 0007 1
International
Nickal 1,243 476.1 587 3724 362 2285 149 ¢ 1096 72 56.5 73 34 18 08 6 0007 o
International i
Paper 1,447 554.2 643 4335 a4z 266.0 w0 | 1215 100 65.8 82 39 19 09 5 0009 [
Johns Manville 1206 4615 526 361.0 363 ms 63 | 1082 N 548 62 3.2 11 .08 3 10007 1
Owens Illinols 1,237 4737 591 3706 323 227.4 1gs , 1080 69 56.3 66 33 20 .08 3 0007 1
Procter & Gamble 1,447 564.2 726 4335 389 266.0 1215 L 65.8 %0 39 20 .09 6 0003 2
Sears 1,236 a73.4 666 370.3 305 227.2 144 - 108.9 58 56.2 63 33 Fal 08 8 0007 3
Standard Oil
{Californial 1,693 648.4 776 507.2 468 32 233 | 1492 1z 7.0 a5 46 14 " 5 0010 1
Standard Oil H
(New Jorsay) 1,156 4428 582 6.3 314 2126 139 1018 70 625 51 3.1 12 07 3 0007 H
" ke bt i a as axn ar aa 18 08 4 0003 o
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The SR is the maximum minutes the minimum, measured in units of a single standrd

deviation. See Fama's evidence for US stocks.

TABLE 1.3
Extrerne Values and Studentized Ranges for Daily Returns
on rhe Dow-Jones Industrials

(1) 12 (3 {4)
SMALLEST LARGEST STUDENTIZED
RETLURM RETURM AANGE (58] T
Alligd Chemical -0718 0838 10,83 1,223
Alcoa =061 0619 7.33 1,190
American Can =.0623 DETS 11.30 1,213
ATET -, 1038 .0agg 20.07 1,219
American Tobacco - 0800 0724 12.62 1,283
Anaconda -.0573 D600 7.87 1,193
Bethiehem Sieel -0735 0619 10,32 1,200
Chrysler —-.08056 008 10.51 1,692
Du Pont - 0599 0516 10.79 1,243
Eastman Kodak =.0443 KiTrk:] 9.23 1,238
General Electric - D647 0565 8.59 1,683
General Foods = 0468 D825 9.00 1,408
General Motors -.0978 0829 14.31 1,446
Goodyear - 0845 A743 16.79 1,162
International Harvester =0870 L06BT 1117 1,200
International Nickel - 0802 0567 9,36 1,243
Intarnational Paper = 0507 0533 B.67 1,447
Johns Manville - D687 11893 11.96 1,205
Owens lllinais -.0837 0G0E 10.08 1,237
Procter 8 Gamble - 0635 0656 11.06 1.447
Sears - 1073 D606 14 .48 1,236
Standard Oil [Californial -.0633 D674 9.85 1,683
Standard Oil {New Jarsay) = 1032 1007 18.29 1,156
Swift & Co, - DETS DE28 9.18 1,448
Texato -.0683 0548 8,84 1,159
Union Carbice - 466 0394 BT 1,118
United Aircraft - 1623 L0849 1381 1,200
U .5, Steal -~ 0539 D555 8.08 1,200
Westinghouse —.0804 0863 11.22 1,448
Woolworth -.0674 R 13.63 1.445
DVErBgES 0727 0746 11.28 1.310

Source: Adapted from Eugene F. Fama, “The Behavior of Stock Market Prices ™
Journal of Business 38 (Jenuary 1965): 51,

Distributions of monthly returns closer to normal than distribution of daily returns.

- Concludes we can perhaps use the normal distribution as a working hypothesis.

A Model of the Behaviour of Stock Prices

Any variable whose value changes over time in an uncertain way is said to follow a

stochastic process.
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These processes can be classified as discrete time - where changes are only taking place as

fixed points in time, or continuous time - where changes can take place at any time.

We will look at a continuous variable, continuous time stochastic process for stock
options. This will help subsequently in understanding the pricing of options and the

derivative securities.

The Markov Property
A Markov process is a particular type of stochastic process where only the present state of
the process is relevant for predicting the future. The past history of the process and the

way in which the present has emerged from the past are irrelevant.

If the price of BHP follows a Markov process and the price is $5.00, the past history of
price movement of BHP is irrelevant in predicting the future as this corresponds to the
weak form of market efficiency. If not, it should be possible to predict the future using

technical analysis.
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Discrete and Continuous Models

We begin by considering a discrete time random walk description.

W(i+1)=W(t)+e(t+1); w(o)=W  e~i.i.d N(0,1)

The variable t represents time and is measured in discrete integer increments from -co to
+oco. For convenience, we take time O as the present. The random variable e(t) is serially
chosen from a normal (Gaussion) distribution with mean zero and unit variance. The

draws through time are independent of each other and identically distributed (i.i.d).
W(t) is the level of the cumulant of e(t), it is called a random walk because it appears that
W takes random steps up and down through time. Early stockmarket theorists used the

random walk to describe the level of stock prices.

Diagram 1 - Discrete time random walk - one observation per period

Value

1 2 3 4 5 Time
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We would specify the time interval for various periods.

.1 . .
Suppose we have a period — for an arbitrary integer n>1.
n

Suppose we were to describe the ~ process which has the same characteristics as a random

walk but is observed more frequently:
W(t+A)=W (t)+e(t+A)] W(0)=WO0,~ i.i.:d N(0,A)

This newly defined process has the same expected drift and variance over n periods as the

first process does over one period.

Suppose we examine a process that is the same as used in diagram 1 but is observed 4

times as frequently.

Diagram 2 - Discrete time random walk - 4 observations per period

Value

N\

1 2 3 4 5 Time
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Now consider the process as A—dt
W(t+dt) = W(t)+e(t+dt)
W(0)=WO,e~i.i.d N(O,d)

and define dW(t) = W(t+dt)-W(t)

We define dt as the smallest possible real number such dt* = 0 whenever o>1

(heuristically).

Either of these processes dw(t) or e(t+dt) is referred to as white noise. Figure (3) shows a

discrete time random walk approaching the continuous limit.

Figure 3 - Discrete Time Random Walk - approaching the continuous limit: three

different examples of random walks
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Recall that dw may be thought of as a normally distributed random variable with mean

zero and variance dt. The following six properties follow by construction.
1. E[dw()]=0
2. E[dw(t)dt] = E[dW(t)]dt =0
3. E[dw(t)?] =dt

Property 1 follows by construction, the mean of this normally distributed variable is zero.

Property 2 uses the property that the expectation of the product of a random variable (dw)

and a constant (dt) equals the constant times the expected value of the random variable.

Property 3 uses the property for any distribution with zero mean that the expected value of

the squared random variable is the same as the variance.

4. Varldw(1)*] = Eldw(r)'] - E*[dw(t)*] = 3dr> —d* =0
5. E[(dw(t)dt)z] = e[ dw(r)’|dr* = 0

6. V]aw(r)dt] = E[(dw(1)dr)] = E[(dw(t)dt)z] — E’[aw(1)dt]=0

Property 4 follows from the knowledge of the fourth central moment of the standard

normal distribution (1, = 3), and the heuristic definition of dt that provides that dt*> = 0.

Property 5 follows immediately from Properties 2 and 3.

Property 6 follows from Properties 2 and 5.
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These properties are important because they demonstrate that the variance of a function of
a random variable vanishes in Properties 4 and 6. Also the expectation operator is
redundant if the variance of a random variable is zero. Therefore, we have

E[f(dw)]=f(dw) if Var [f(dw)] =0

These properties give rise to three multiplication rules:

Rule 1 dw(t)* =dt
Rule 2 dw(t)dt =0
Rule 3 dt> =0

The standard Wiener process has many properties, some of which we provided below.

1. W(t) is continuous in t.

2. W(t) is nowhere differentiable.

3. W(t) is a process of unbounded variation.

4. W(t) is a process of bounded quadratic variation.

5. The conditional distribution of W(u) given W(t), for u>t, is normal with mean W(t)
and

variance (U-t).

6. The variance of a forecast W(u) increases indefinitely as u—co.

Property 1 holds because dw, although it is a random variable, is of infinitesimal
magnitude. W is not differentiable (Property 2) since the left and right differentials are
not the same; they are independent random variables. Property 3 states (without proof)
that the continuous random walk path has infinite length. However, Property 4 states that

the sum of squared changes in W is finite, and does in fact equal t.

Properties 5 and 6 discuss the distribution of W(u) given w(t) for u>t. Recall that W is an
integral (a sum) of random variables dw. The sum of normal distributed random variables

is also normal: the mean of the sum is the sum of the means, and the variance of the sum
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equals the sum of the variances if the correlations are all zero. This is the same as
property 5. Property 6 simply mentions the property that the variance of an ever-
expanding sum of normally distributed independent random variable will grow

indefinitely.

The standard Wiener process is inappropriate for much financial modelling. However, we
can write quite general continuous stochastic processes as functions of standard Wiener
processes. For example, consider once again a discrete random walk with generalised

drift and heteroscedasticity (i.e., changing variance) that depend on both X(t) and t:

X(t+1) = X(t) + au(X(t),0)+o(x(t),t)e(t+1)

X(0) = Xo,e~1.1.d. N(O,1)

If we choose a sub interval of length A that mimics the behaviour of this process, we can
write:

X(t+A)=X(t)+ou(X(t),) A+o(X(t),t)e(t+A)

X(0)=Xo,e~i.i.d No,A)

As we let A—dt, we see that

dX(t) = o X(t),H)dt+c(x(t)t)dw(t); X(0)=Xo

which is the description of a generalised univariate Wiener process.

From this point we drop t as an argument of the X and W processes, the time dependence

will be understood.

dX = o X,t)dt+c(X,t)dw; X(0) = Xo

How can we interpret the statement

dx = adt + odw
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Suppose for the moment that o and ¢ are constant. The term dW is a normally distributed
random variable, with mean zero and variance dt: the statement says that d is also a
random variable, a linear function of a normal random variable, which is itself normally

distributed. The random variable dx has mean "odt" and variance "o >dt".

The difficulty lies in changing levels of o and 6. Changes may depend on the level of X,
the passage of time, or both. The accumulation of these normal random variables can yield

distributions of future values that follow many distributions: for example:

ARITHMETIC BROWNIAN MOTION
dx = adt+odw
Let oX,t) = o and o(X,t) = o, two constants then the process X is s aid to follow
arithmetic Brownian motion with drift o and volatility 6. The process is an appropriate
specification for economic variables that grow at a linear rate and exhibit increasing
uncertainty. The process X has the following properties (among others):
1. X may be positive or negative
2. If u>t, then Xu is a future value of the process relative to time t. The distribution
of Xu, given Xt is normal with mean Xt+o(u-t) and a standard deviation of
ovu-—t.

3. The variance of a forecast Xu tends to infinity as u does (given t, Xt).

The three properties indicate that arithmetic Brownian motion is appropriate for variables
that can become positive or negative, have normally distributed forecast errors, and have

forecast variance that increases linearly in time.

The diagram below demonstrates a sample arithmetic Brownian motion path with positive

drift (0>0).
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Arithmetic Brownian Motion

, M
. W

1 47 93 139 185 231 277 323 369 415 461
Time

Level of X

GEOMETRIC BROWNIAN MOTION
dx = aXdt + oXdw

Let aX,t) = aX and o(X,t) = 6X. The process X is then said to follow geometric

Brownian motion with drift o and volatility ©.

The process is appropriate for economic variables that grow exponentially at an average r

ate of o and have volatility proportional to the level of the variable. The process also

exhibits increasing forecast uncertainty.

The process X has the following properties (among others)

1. If X starts at a positive value, it will remain positive.
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2. X has an absorbing barrier at 0: Thus if X hits zero (a zero probability result) then X

will remain at zero.

3. The conditional distribution of Xu, given Xt is log normal. The conditional mean of

In(Xu) for u>t is ln(Xt)+0c(u—t)—%O'2(u —t) and the conditional standard deviation of

In(Xu) is 64/[u—t]. In(Xu) is normally distributed. The conditional expected value

of Xu is Xt exp[ou(u-t)].
4. The variance of a forecast of Xu tends to infinity as u does.

Geometric Brownian Motion

Geometric Brownian Motion

10
% 8
° 6
2 4
Q
- 2

0

1 48 95 142 189 236 283 330 377 424 471
Time
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Geometric Brownian motion(GBM) is often used to model security values, since the
proportional changes in security price are independent and identically normally
distributed. It can also be used to model anything that is positive and increases (on

average) at a constant exponential rate.

Some key players in this area of finance.

The Time-Tested Strategy for
Successful lnvesting

A RANDOM
WALK DOWN

Robert C. Merton Myron 8. Scholes
@ 1/2 of the prize O 172 of the prize
Usa usa

Harvard University Long Term Capital
Cambridge, MA, USA Management

Greenwich, CT, USA

Returr‘l rates as a random Bachslier’s thesis 1900 .

Black, Scholes, Merton 1973
walk Cox, Ross, Rubenstein 1979
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Properties of Univariate Financial Series
1. Are financial series stationary?

We need some model to formally address the issue.

Traditionally, the response has been to assume that the financial series y, t=1 ........ Tisa
covariance stationary process, i.e., a process for which the auto-covariances ; = E(y:, yi)

exist.

Generally, one also wishes to impose some memory conditions upon the rate at which v;
lim
dies out with j. At a minimum, one will need that j — o ;=0

A series cannot be independently distributed if any of v,j=1 ........ oo are non-zero.

The auto-covariance can be estimated and converted into autocorrelations

A

p; = 0¥ j» where upon tests are performed upon whether py, ps .......... are zero.

Most econometric programs provide this information along with suitable standard errors

for

-1
A T T
P; —(Z 2 j t=jHLyyi—j *

=Ly

the standard errors depend on the exact hypothesis being tested, but if it is that

P; j=1 ... oo are zero, they will be T-Y2

In the following arguments, we will generally treat random variables as having zero

expectation.

There is a great deal of dependence in stock prices and very little in returns.
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A response to this emerged in the theory of efficient markets. Here it is argued that the

change in stock prices should be independent over time.

If it were not true, opportunities for profit would emerge and these should have been

competed away.

This leads to a particular type of independence, viz. the “unit root” or “random walk”
model.

Yo=Y et (D

and then the question has a dual nature: does yt have the structure of (1) and is Ayt

independent?

This is a time series view of the hypothesis “Accounting/Finance” would take an ‘event
study’ viewpoint, studying the reaction of yt to various events to assess whether all the
information is incorporated into prices. To do the latter requires detailed individual stock

behaviour. Here, new “events” are subsumed into et.

Two different issues need to be addressed. The first has been investigated in a number of

ways.

writing (1) as

Ye =Py Pt (2)

we might test HO: p =1 vs H1: p < 1 using yt and yy;.

This leads to tests for a unit root of the Phillips-Peron, Dickey-Fuller type which feature in

many econometric programs.
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The evidence for a unit root in stock prices and no unit root in stock returns is very strong.

1.2

Are financial series independently distributed over time?

The evidence suggest that there is a unit root in stock prices and exchange rates,

that there is not one in earnings, and that the evidence is mixed for exchange rates,

but we have not yet addressed the issue of dependence in Ayt = et which is an

integral part of the efficient markets’ hypothesis.

There are a number of ways in which this issue has been addressed.

(a)

(b)

Computation of the auto-correlation function of Ayt followed by tests that
serial correlation coefficients are zero. Generally, these re found to be
zero, except if data has been measured such that there is an overlapping

component.

A different viewpoint is to be had by thinking of the impact of news et.
With no dependence, the short-run and long-run impact of news is the

same, i.e., dyt det = 1 ay”%et =1

However, if the Ayt process has dependence, e.g. is a MA(1)g, + o€, then

(1) can be reformulated as oyt Ser =1 ayt+%£t =(1+o)

In general, for Ayt being an MA(q),
et+o,e, et — ... +oget — g, ayt+°/aet =(1+d, +d,+..40q), leading
to the idea of testing for dependence by testing Ho: oy + o, + agq = 0.
Testing if the sum of o's is zero is likely to be more powerful than testing
if the individual o‘s are zero, because only a scalar is being tested and it is

more likely to be precisely estimated than any of its components.
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Fama and French (1988) “Permanent and Temporary Components of Stock
Prices”, Journal of Political Economy, 96, pp246-273, work with a model
of permanent and temporary components in a series and concentrate upon

the question of whether there is a temporary component in returns or not.

Fama and French (1988) form y.x - yt and yt - yi, i.e., kth forward and
backward being differences of the series yt, and to regress the former or the
latter. With yt as the log of stock prices 1k = yuk = yt is the continuously
compounded kth period return and it will be the sum of the one-period

returns.

Tk = Yk — Yerk—toTak—1 = Yirk—1 ~ Yisk—2, €tC.

In large samples, the numerator of the regression coefficient will tend to
k k-1 e
E[( S +)( _ rt_-” and Fama and French are therefore testing if this
=171+ i=0"1=)
is

zero. To appreciate what is being tested set k=1, 2, 3, giving

E(rt+1rt) =7,(k=1)

E[(rm + rt+2)(rt T+ rt—2)] =Y, +27, + 75k =2)

E[(1,41 + fp + 1) (5 41y 1) =70 +27, + 375 +27, +75(k =3)

Thus, one is essentially testing if a weighted average of the auto-

covariances is zero, rather than whether the auto-covariances themselves

are. The reason we test a weighted average is because we are implicitly
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testing if the scalar var (yf) is zero. We get this model because we have a

particular model of deviations from efficiency in mind.
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Volatility

Volatility refers to the movement in an asset price from one point in time to the next.
Since volatility reflects the uncertainty in expected asset returns, it is central to most
investment decisions as a proxy for risk. The measurement and determination of volatility
has become relatively more important with increased financial innovation, i.e., the
development of trading instruments designed to neutralise specific forms of risk.
Unfortunately, volatility is neither uniquely defined, nor is it likely to be constant over

time. Some of the work on this topic is summarised in the following slides.

If the current price of an equity is P, and the price next period is P, the simplest

definition of volatility is

0 =(Pu~R) M

+ T

2

where 6},

denotes the volatility over the period t,t+1.
Yet there is no unique definition of volatility. The most general definition is that volatility

is the expected movement in price from its anticipated value in the next period.

It is often estimated by

o2, =(P,—EP,) 2

1 = \ L — Bl
where E P, is the anticipated or expected price of the asset at t+1, based on information
at t. Clearly, any definition of volatility depends on the definition of expected price in the

next period. In the so-called naive case, where we replace the expected price by its current

price, that is E P, = P,, we obtain the definition 1.
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Why is volatility important?

Volatility reflects the uncertainty in the expected value of an asset. Hence it becomes one
measure of the risk premium associated with an asset. The risk premium can be used in
many ways, inter alia in the valuation of assets and in the pricing of options conditional on
the asset. For these purposes, the volatility which is important is the volatility of returns,

where returns are defined logarithmically by

P..+D
R, =log(—’“ - ] 3)

t

where D, is the dividend in the period t to t+1. We define the volatility of returns

analogously to the volatility of prices, substituting R, for P, in(1) and (2).

One valuation method for equities is the dividend discount model. In this method, the
valuation is determined by the expected future dividend stream discounted by a risk-
adjusted discount rate. The usual method of risk adjustment is obtained using the capital
asset pricing model. However, it is also possible to use more direct measures of risk

adjustment from volatility models, so that the risk-adjusted discounted rate is then
p=1f+g(o) )

where p is the risk-adjusted discount rate, rf is the risk-free rate and g(o) is a function of

the average volatility of the asset. The function g depends on the volatility model used.

Options and other derivative assets are also priced on the basis of the average volatility of

returns on the underlying stock.

What causes volatility?

Volatility is caused by the reaction of traders to market signals. These include:

DEA/ECF5103/lect3.Doc/26 Lecture 3
12/08/2008



1. Information
(a) Political, e.g., election announcements, leadership changes.
(b) Economics, e.g., balance of payments announcements, interest rate changes.
(c) External market, e.g., the effect of Wall Street, and of the futures market on the
Australian Stock Exchange.

(d) Internal market, e.g., earnings announcements, resource discourses.

2. Past Price Changes (leverage effects)
It is usually assumed that the volatility of an equity is an increasing function of
financial leverage. If the price of equity falls, the consequent leverage effects typically

induce greater volatility.

3. Expectations of Volatility
For most financial variables, the current value of the variable is often an important
determinant of the next period's value, simply because expectations are partially self-
fulfilling. This is no less true for volatility. In periods of high uncertainty, we tend to

expect this uncertainty to persist so that volatility will depend on previous volatility.

4. Noise Trading
Many traders may trade on noise (unsystematic or random signals) as if it were

information. This imparts a common level of volatility to financial markets.

How to model volatility?
The principal reason for modelling and not just estimating volatility is to forecast it for use

in option pricing models and in the determination of risk premia.

Clearly, any model of volatility proceeds in two stages: we must first specify the expected

returns process E R ., and then specify the process governing volatility. The expected

DEA/ECF5103/lect3.Doc/27 Lecture 3
12/08/2008



returns process may be a constant (E,R,, = C) as in Black-Scholes pricing, or of some

other form, such as a martingale process (E,R,, =R). A point estimate of volatility of

2

11 Where

returns in the period t,t+1 is then given by G
Uy =Ry —ERy, 5

the estimated deviation of returns from their estimated anticipated values.

There are then essentially two methods for modelling volatility:

1. The easiest method is to consider the variable i7,, and to describe its evolution. This

is called the stylised facts model of volatility. We can for example run regressions

such as:

A2 2 2
a) ur=a,+a;, 0 -1t +a, 0’ +V, (6a)
b) % =a,+a,;,UNBP, +a,UNINF+............ +V, (6b)

©) 0% =a,+a,|P_ —E_P_|.a,<0+V, (6¢)

where V, is some positive error term.

The first of these regressions is the volatility persistence model, that is the volatility (or its

estimate) depends on volatility up to r periods before.

The second of these regressions is an information model, asserting that volatility depends
on unanticipated changes in the balance of payments (UNBP); and unanticipated changes
in inflation (UNINF), and other macroeconomic information. The third regression is a

leverage effect regression - so if the price falls further than we expect, volatility increases.
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These models can be combined into a more general model of volatility which includes

volatility persistence, information effects and leverage effects.

Furthermore, when all the coefficients except for a, are zero, each model becomes the

standard historical estimate of volatility used in Black-Scholes, that is:

2
07 =a, +v, (7)

2. A second method is to model the expected return and the volatility simultaneously.
The advantage here is that the point estimate of volatility in (5) is replaced by a
population value of volatility which is estimated period by period. This includes the
recent set of models referred to as the ARCH and GARCH models. Briefly, these

models can be written as:

RI‘+1 = E[(RH—I) + u[ (Sa)

O-r2+1 = f(11) (8b)

where I, is the information set at time t, which includes past returns, past values of the

innovations u;, and past values of volatilities o .

The important point in ARCH-GARCH models is that volatility and not just a point
estimate of volatility is being modelled - furthermore, (8a) and (8b) are estimated

jointly.

Within ARCH-GARCH models, there are various ways to represent (8b). The

simplest is the linear ARCH model, which is specified as:

2 2 2
O =0, +0,u+.......... +oqu;,; —q )
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In this case, volatility is prescribed to be a function of past squared innovations in the
expected returns equation. This will capture the effect that in periods of high
uncertainty (when u, is large), volatility will also be high. Obviously, more elaborate
models of volatility are possible. One generalisation is to the linear GARCH model,

given by:

a p
2 2 2
O =0+ Z (U +z Biotii (10)
i-1 =1

where the volatility depends on both past squared innovations and past volatilities.
This captures the expected volatility model referred to above. The process in (9) is
called an ARCH (q) volatility model, and the process in (10) a GARCH (p,q) volatility

model. There are several important points associated with these models.

1. Estimation
These models are readily estimated using maximum likelihood techniques. For example,

they are standard routines in many recent packages, including TSP version 4.2.

2. Positivity

Volatility is a positive variable. This means that all the parameters o; and 3; should be

positive. In practice, this may be difficult to ensure except by using complicated

estimation techniques. There are two easy ways:

1. If the lag length of the ARCH-GARCH process is kept short (p,g, =1 or 2), the

parameters usually remain positive.

2. We can reparametise the process. For the ARCH process, rewrite as:

2
t+1

ol = exp(ao U+ +a’qu,2+1_q) (11)

DEA/ECF5103/lect3.Doc/30 Lecture 3
12/08/2008



where exp refers to the exponential function. In this case, the volatility is ensured
to be positive and the process (11) is an example of a special class of volatility

models called EGARCH.

3. Extensions
The ARCH-GARCH models can be expanded to include terms other than past innovations

and past volatilities; for example, the leverage and information models of (6b) and (6c).

For example, the ARCH form of (6b) would be

o7, =0, +0o,u’ +0o, UNBP, +0,UNINF, (12)
4. ARCH or GARCH
A GARCH (1,1) process is algebraically equivalent to an ARCH process with an infinite

lag structure, so that long ARCH processes are usually better represented by a short

GARCH process.

5. Frequency

ARCH and GARCH models are especially suitable for high frequency data, i.e., where the
interval (tlt + 1) is one day or less. In particular, this includes data sampled at 15-minute
intervals, at hourly intervals, and closing prices on successive days. ARCH and GARCH
models are typically not suitable for models of monthly volatility, essentially because the
volatility persistence tends to disappear in monthly data. Since for option pricing, the
estimate of volatility required is that obtained as the time interval becomes small (the

instantaneous volatility), ARCH-GARCH models are quite appropriate.
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INCNUNCCUNNNNNNNNNNNENNN

T Bollershev, R 'Y Chou, K F Kroner, “Arch modelling in Finance: A review of the

theory and empirical evidence”, Journal of Econometrics (1992), pp5-59.

Although volatility clustering has a long history as a relevant empirical regularity
characterising high frequency speculative prices, it was not until recently that applied
researchers in finance have explicitly recognised the importance of modelling time

varying second order moments.

A key factor in most of these studies has been the Autoregressive Conditional
Heteroskedasticity model (ARCH) introduced by Engle (1982). The paper provides an
overview of developments in the formulation of ARCH models and a survey of some of

the numerous empirical applications.

- Uncertainty plays a central role in finance.

- The uncertainty of speculative prices changes through time.

- One of the most prominent tools for modelling changing variances is ARCH.

ARCH

Following Engle (1982) we refer to all discrete time stochastic processes (Et) of the form

E =70, (1)

Z.iid., E(Z)=0, Var (Z) =1 2)

With 6, a time-varying, positive, and measurable function of the time t-1 information set,

as an ARCH model. To begin, we consider E; as a univariate process.
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By definition, E; is serially uncorrelated with mean zero, but the conditional variance of E;

equals Gtz, which may be changing through time.

In most applications, E; will correspond to the innovation in the mean for some stochastic

process, say (yt) where

yi = g(Xe1,b) + ¢ 3)

and g(x.1,b) denotes a function of x; and the parameter vector b, where x; is in the time
t-1 information set. To simplify the exposition, in most of the discussion below we shall

assume that E; itself is observable.

Let f(Z;) denote the density function for Z; and let 6 be the vector of all the unknown

parameters in the model. By the prediction error decomposition, the log-likelihood

function for the sample E;, E i, ...... E, becomes apart from initial conditions
T
L(6) = 2 [logf(E,5,”') ~loga,| @)
t=1

The second term in the summation is a Jacobian term arising from the transformation from
Z: to E;. Note that (4) also defines the sample log-likelihood for Y7, YT-1................... Y,
as given by (3). Given a parametric representation for Zt, maximum likelihood estimates
for the parameters of interest can be computed from (4) by a number of different

numerical optimisation techniques.

The above is very general and allows for a wide variety of models.

- The economic theory explaining the conditional variances is very limited.
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The linear ARCH (q) model

As Engle (1982) suggests in his seminal paper, one possible parameterisation for Gf is to

express Gf as a linear function of past squared values of the process.

ol =W+ i(xiEf_i =w+a(L)E? (5)
i=1

where w>0 and o; = 0, and L denotes the lag operator. This model is known as the linear
ARCH (q) model. With financial data it captures the tendency for volatility clustering,
i.e., for large (small) price changes to be followed by other large (small) price changes, but

of unpredictable sign.

- In order to reduce the number of parameters and ensure a monotonic declining effect of
more distant shocks, an ad hoc linearly declining lag structure was often imposed in many
early applications of this model.

Maximum likelihood (ML) based inference procedures for the ARCH class of models
under this distributional assumption are discussed in Engle (1982) and Pantula (1985).

The Linear GARCH (p.q) Model

An alternative and more flexible log structure is often provided by the Generalised ARCH

or GARCH (p.q) model in Bollershev (1986).

o = w+io¢iEf_i +i[5icf_i =w+a(L)E? +B(L)o; )
i=1 i=1
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To ensure a well-defined process, all the parameters in the infinite order AR

representation o> = ¢(L)E> =(1-B(L)) ' a(L)E?> must be non-negative where it is

assumed that the roots of the polynomial B(A)=1 lie outside the unit circle.

For a GARCH (1.1) process, this amounts to ensuring that both a; and B; are non-

negative. It follows also that E, is covariance stationary if and only if ou(1) + B(1)<1.
Non-linear and non-parametric ARCH

In the GARCH (p.q) model (7), the variance depends on the magnitude and not on the sign
of E.. This is somewhat at odds with empirical work on the behaviour of stock prices

which suggest that leverage effect may be present.

In the Exponential GARCH (p.q) or GARCH (p.q) model introduced by Nelson (1990),

Gtz is an asymmetric function of past E;s as defined by (1) and (2) and

logcf =w+ iai[q)zt_i + y{
i=1

Zt—i

Ez,, D+ g B, logo? ; @®)

Unlike the linear GARCH model in (7), there are no restrictions on the parameters o; and
B to ensure non-negativity of the conditional variances. Thus, the representation in (8)
resembles an unrestricted ARMA (p.q) model for log 7. If ;¢ < 0, the variance tends to
rise (fall) when E; is negative (positive) in accordance with the empirical evidence for

stock returns.
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