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 Adjustments for changes in the basis of quotation. 

 

Dividends 

 

• Add back cash dividend on date share is quoted XD 

• Ignores - XD date is before cash is paid to shareholders 

• Income tax on dividends 

 

Rights Issues 

 

Adjustment ignores 

 

• Income tax issues 

• Time value of delayed cash subscription 

• Option value of delayed subscription 

 

Discrete v. Continuous 

 

Time Price Discrete ROR Cont. ROR 

 t = o Pt = 1 * * 

 1 2 +100% +69.3% 

 2 1 -  50% -69.3% 

  TOTAL +  50% 
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Discrete ROR 

- Biased (upwards) Estimate of Total ROR 

- Is greater than continuous ROR 

- Bias depends on variance of prices in sub periods 

- Why biased?  because 
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Continuous ROR 

- Unbiased estimate because total ROR 
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Changes in Basis of Quotation 

- Dividends Cum Div (with Div) 

  Ex Div (without Div) 

 

- Capitalisation Changes 

 - Rights Issues 

 - Bonus Share Issues 

 - Share Splits 

 - Returns of Capital, etc. 

 



DEA/ECF5103/lect3.Doc/3 Lecture 3 

12/08/2008 

 

- Need P1 on a Comparable Basis with Po! 

 

  P1* = Po (1+r) 

Where P1* = P1 + ADJ 

 

- Conventional adjustments (for changes in basis of share price quotation): 

 ADJ = CASH Div. AMT  - (dividends) 

 

 ADJ =  A (XR-CASH) - (Rights Bonus Issues and Share Splits and Consolidations 

  B 

 

- Derivation of adjustment ( )ADJ
A

B
XR CASH= −  

 

 A:B at Cash = issue terms 

 (EG: 2:5 at $1.25) 

 

 XR =  Traded value of shares 

  EX RIGHTS 

 

 CR =  What shares would have 

  traded for were they 

  CUM RIGHTS 

 

 Investment Outlay  = Portfolio Worth 

 B(CR) + A(CASH) = (A+B) XR 

 ADJ = CR-XR 

 now CR = (A+B)XR-A(CASH)B 

 

 i.e., ADJ = as above                           -XR 

 

  = (A+B)XR-A(CASH)-B(XR)/B 

 

 and ADJ = A(XR-CASH) 

   B 
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Example 

 Swan Tele 2-5 Rights Issue Dec 2008 XR Price = $1.20 

  Cash = .85 

  Assume last Nov was $1.30 

 

 Q. what was ROR Nov 30 to Dec 31? 

 

 ROR
P ADJ

Po
=

+
−

1
1 

 

 ADJ = 2/5 (1.20-.85) = .14 

 

 i.e., ROR =
+

−
1 20 14

1 30
1

. .

.
 

 

  = 3.08% (Discrete) 

 

 Bonus issue) 

   )  NO CASH PAYABLE 

  Share split) 

 

FAMA - THE BEHAVIOUR OF STOCK MARKET RETURNS 

 

THE MEAN 

 

( ) ( )E x xP x
x

~ ~=∑  (1) 

Discrete 

Random variable 

 

The mean of a continuous random variable 

 

( ) ( )dxxxPxE
x

∫=~  (2) 

 

Standard deviation of a discrete random variable 

 

Variance = ( ) ( )[ ] ( )[ ] ( )σ 2 2 2~ ~ ~ ~ ~x E x E x x E x P x
x

= − = −∑  (3) 
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The variance of a continuous random variable 

 

( ) ( )[ ]( ) ( )[ ] ( )σ 2 2 2~ ~ ~ ~ ~ ~x E x E x x E x P x dx
x

= − = −∫  (4) 

 

Standard deviation 

 

( ) ( )σ σ~ ~x x= 2  (5) 

 

Characterisation of Normal Distributions by their Means and Standard Deviations 

For any normally distributed random variable, the probability that any drawing is within 

one standard deviation of the mean, i.e., in the interval 

 

( ) ( ) ( ) ( )E x x x E x x≤ − ≤ ≤ +~ ~ ~σ σ  

is .6826 

 

The possibility that the random drawing is in the interval 

 

( ) ( ) ( ) ( )E x x x E x x~ ~ ~ ~− ≤ ≤ +2 2σ σ  

 

is .9550 

 

Equivalently, for any normally distributed random variable ∼, the transformed variable 

 

( )
( )

~
~ ~

~r
x E x

x
=

−
σ

 

 

has the unit normal distribution with mean equal to 0 and standard deviation equal to 1. 
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Unit Normal Distribution 

 

 

 

 

 

Sample mean 

 

X
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=
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 (6) 

 

The sample variance is 

 

( ) ( ) ( )σ 2 2

1

1x xi x T
i

T

= − −
=
∑ /  (7) 

 

Sample variance = ( ) ( )s x s x= 2  (8) 
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Testing for Normality:  The Studentised Range 

A useful statistic for judging whether the distribution that generated a sample is normal is 

the studentised sample. 

 

This is 

 

( ) ( )
( )

SR
Max xi Min xi

S x
=

−
 (9) 

 

The SR is the maximum minus the minimum, measured in units of single standard 

deviation. 

 

See Fama's evidence for US stocks. 
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The SR is the maximum minutes the minimum, measured in units of a single standrd 

deviation.  See Fama's evidence for US stocks. 

 

Distributions of monthly returns closer to normal than distribution of daily returns. 

 

- Concludes we can perhaps use the normal distribution as a working hypothesis. 

 

A Model of the Behaviour of Stock Prices 

Any variable whose value changes over time in an uncertain way is said to follow a 

stochastic process. 
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These processes can be classified as discrete time - where changes are only taking place as 

fixed points in time, or continuous time - where changes can take place at any time. 

 

We will look at a continuous variable, continuous time stochastic process for stock 

options.  This will help subsequently in understanding the pricing of options and the 

derivative securities. 

 

The Markov Property 

A Markov process is a particular type of stochastic process where only the present state of 

the process is relevant for predicting the future.  The past history of the process and the 

way in which the present has emerged from the past are irrelevant. 

 

If the price of BHP follows a Markov process and the price is $5.00, the past history of 

price movement of BHP is irrelevant in predicting the future as this corresponds to the 

weak form of market efficiency.  If not, it should be possible to predict the future using 

technical analysis. 
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Discrete and Continuous Models 

We begin by considering a discrete time random walk description. 

 

( ) ( ) ( )W t W t e t+ = + +1 1 ;       ( )w o W=        e∼i.i.d N(0,1) 

 

The variable t represents time and is measured in discrete integer increments from -∞ to 

+∞.  For convenience, we take time 0 as the present.  The random variable e(t) is serially 

chosen from a normal (Gaussion) distribution with mean zero and unit variance.  The 

draws through time are independent of each other and identically distributed (i.i.d). 

 

W(t) is the level of the cumulant of e(t), it is called a random walk because it appears that 

W takes random steps up and down through time.  Early stockmarket theorists used the 

random walk to describe the level of stock prices. 

 

Diagram 1 - Discrete time random walk - one observation per period 
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We would specify the time interval for various periods. 

 

Suppose we have a period 
1

n
 for an arbitrary integer n>1. 

 

Suppose we were to describe the ∼ process which has the same characteristics as a random 

walk but is observed more frequently: 

 

W(t+∆)=W(t)+e(t+∆)j  W(0)=W0,∼ i.i.:d N(0,∆) 

 

This newly defined process has the same expected drift and variance over n periods as the 

first process does over one period. 

 

Suppose we examine a process that is the same as used in diagram 1 but is observed 4 

times as frequently. 

 

Diagram 2 - Discrete time random walk - 4 observations per period 
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Now consider the process as ∆→dt 

 

W(t+dt) = W(t)+e(t+dt) 

 

W(0)=WO,e∼i.i.d N(O,d) 

 

and define dW(t) ≡ W(t+dt)-W(t) 

 

We define dt as the smallest possible real number such dtα  = 0 whenever α>1 

(heuristically). 

 

Either of these processes dw(t) or e(t+dt) is referred to as white noise.  Figure (3) shows a 

discrete time random walk approaching the continuous limit. 

 

Figure 3 - Discrete Time Random Walk - approaching the continuous limit: three 

different examples of random walks 
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Recall that dw may be thought of as a normally distributed random variable with mean 

zero and variance dt.  The following six properties follow by construction. 

 

 1. E[dw(t)] = 0 

 2. E[dw(t)dt] = E[dW(t)]dt = 0 

 3. E[dw(t)2] = dt 

 

Property 1 follows by construction, the mean of this normally distributed variable is zero. 

 

Property 2 uses the property that the expectation of the product of a random variable (dw) 

and a constant (dt) equals the constant times the expected value of the random variable. 

 

Property 3 uses the property for any distribution with zero mean that the expected value of 

the squared random variable is the same as the variance. 

 

 4. ( )[ ] ( )[ ] ( )[ ]Var dw t E dw t E dw t dt dt
2 4 2 2 2 23 0= − = − =  

 

 5. ( )( )[ ] ( )[ ]E dw t dt e dw t dt
2 2 2 0= =  

 

 6. ( )[ ] ( )( )[ ] ( )( )[ ] ( )[ ]V dw t dt E dw t dt E dw t dt E dw t dt= = − =2 2 0  

 

Property 4 follows from the knowledge of the fourth central moment of the standard 

normal distribution ( )u4 3= , and the heuristic definition of dt that provides that dt2 0= . 

 

Property 5 follows immediately from Properties 2 and 3. 

 

Property 6 follows from Properties 2 and 5. 

 



DEA/ECF5103/lect3.Doc/14 Lecture 3 

12/08/2008 

 

These properties are important because they demonstrate that the variance of a function of 

a random variable vanishes in Properties 4 and 6.  Also the expectation operator is 

redundant if the variance of a random variable is zero.  Therefore, we have 

 E[f(dw)]=f(dw) if Var [f(dw)] = 0 

 

These properties give rise to three multiplication rules: 

 Rule 1 dw t dt( )2 =  

 Rule 2 dw(t)dt = 0 

 Rule 3 dt2 0=  

 

The standard Wiener process has many properties, some of which we provided below. 

1. W(t) is continuous in t. 

2. W(t) is nowhere differentiable. 

3. W(t) is a process of unbounded variation. 

4. W(t) is a process of bounded quadratic variation. 

5. The conditional distribution of W(u) given W(t), for u>t, is normal with mean W(t) 

and  

 variance (U-t). 

6. The variance of a forecast W(u) increases indefinitely as u→∞. 

 

Property 1 holds because dw, although it is a random variable, is of infinitesimal 

magnitude.  W is not differentiable (Property 2) since the left and right differentials are 

not the same;  they are independent random variables.  Property 3 states (without proof) 

that the continuous random walk path has infinite length.  However, Property 4 states that 

the sum of squared changes in W is finite, and does in fact equal t. 

 

Properties 5 and 6 discuss the distribution of W(u) given w(t) for u>t.  Recall that W is an 

integral (a sum) of random variables dw.  The sum of normal distributed random variables 

is also normal:  the mean of the sum is the sum of the means, and the variance of the sum 
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equals the sum of the variances if the correlations are all zero.  This is the same as 

property 5.  Property 6 simply mentions the property that the variance of an ever-

expanding sum of normally distributed independent random variable will grow 

indefinitely. 

 

The standard Wiener process is inappropriate for much financial modelling.  However, we 

can write quite general continuous stochastic processes as functions of standard Wiener 

processes.  For example, consider once again a discrete random walk with generalised 

drift and heteroscedasticity (i.e., changing variance) that depend on both X(t) and t: 

 

 X(t+1) = X(t) + α(X(t),t)+σ(x(t),t)e(t+1) 

 

 X(o) = Xo,e∼i.i.d. N(O,1) 

 

If we choose a sub interval of length ∆ that mimics the behaviour of this process, we can 

write: 

 X(t+∆)=X(t)+α(X(t),t)∆+σ(X(t),t)e(t+∆) 

 X(0)=Xo,e∼i.i.d No,∆) 

 As we let ∆→dt, we see that 

 dX(t) = α(X(t),t)dt+σ(x(t)t)dw(t);X(o)=Xo 

 

which is the description of a  generalised univariate Wiener process. 

 

From this point we drop t as an argument of the X and W processes, the time dependence 

will be understood. 

 dX = α(X,t)dt+σ(X,t)dw; X(o) = Xo 

 

How can we interpret the statement 

 dx = αdt + σdw 
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Suppose for the moment that α and σ are constant.  The term dW is a normally distributed 

random variable, with mean zero and variance dt:  the statement says that d is also a 

random variable, a linear function of a normal random variable, which is itself normally 

distributed.  The random variable dx has mean "αdt" and variance "σ2dt". 

 

The difficulty lies in changing levels of α and σ.  Changes may depend on the level of X, 

the passage of time, or both. The accumulation of these normal random variables can yield 

distributions of future values that follow many distributions:  for example: 

 

ARITHMETIC BROWNIAN MOTION 

 dx = αdt+σdw 

Let α(X,t) = α and σ(X,t) = σ, two constants then the process X is s aid to follow 

arithmetic Brownian motion with drift α and volatility σ.  The process is an appropriate 

specification for economic variables that grow at a linear rate and exhibit increasing 

uncertainty.  The process X has the following properties (among others): 

 1. X may be positive or negative 

 2. If u>t, then Xu is a future value of the process relative to time t.  The distribution 

of Xu, given Xt is normal with mean Xt+α(u-t) and a standard deviation of 

σ u t− . 

 3. The variance of a forecast Xu tends to infinity as u does (given t, Xt). 

 

The three properties indicate that arithmetic Brownian motion is appropriate for variables 

that can become positive or negative, have normally distributed forecast errors, and have 

forecast variance that increases linearly in time. 

 

The diagram below demonstrates a sample arithmetic Brownian motion path with positive 

drift (α>0). 
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GEOMETRIC BROWNIAN MOTION 

dx = αXdt + σXdw 

 

Let α(X,t) = αX and σ(X,t) = σX.  The process X is then said to follow geometric 

Brownian motion with drift α and volatility σ. 

 

The process is appropriate for economic variables that grow exponentially at an average r 

ate of α and have volatility proportional to the level of the variable.  The process also 

exhibits increasing forecast uncertainty. 

 

The process X has the following properties (among others) 

 

1. If X starts at a positive value, it will remain positive. 
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2. X has an absorbing barrier at 0:  Thus if X hits zero (a zero probability result) then X 

will remain at zero. 

 

3. The conditional distribution of Xu, given Xt is log normal.  The conditional mean of 

ln(Xu) for u>t is ln(Xt)+α(u-t)- ( )1

2

2σ u t−  and the conditional standard deviation of 

ln(Xu) is σ u t− .  ln(Xu) is normally distributed.  The conditional expected value 

of Xu is Xt exp[α(u-t)]. 

 

4. The variance of a forecast of Xu tends to infinity as u does. 

 

Geometric Brownian Motion 

 

Geometric Brownian Motion
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Geometric Brownian motion(GBM) is often used to model security values, since the 

proportional changes in security price are independent and identically normally 

distributed.  It can also be used to model anything that is positive and increases (on 

average) at a constant exponential rate. 

 

Some key players in this area  of finance. 
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Properties of Univariate Financial Series 

1.  Are financial series stationary? 

We need some model to formally address the issue. 

 

Traditionally, the response has been to assume that the financial series yt, t = 1 ........T is a 

covariance stationary process, i.e., a process for which the auto-covariances γj = E(yt, yt-j) 

exist. 

 

Generally, one also wishes to impose some memory conditions upon the rate at which γj 

dies out with j.  At a minimum, one will need that j → ∞
lim

  γj = 0 

 

A series cannot be independently distributed if any of   γj, j = 1 ........∞ are non-zero. 

 

The auto-covariance can be estimated and converted into autocorrelations 

 $ $ ~ρ γ γj j= −
0

1 , where upon tests are performed upon whether  ρ1, ρ2 ..........are zero. 

 

Most econometric programs provide this information along with suitable standard errors 

for  

 $
, , ,ρ j t j y t j

T
t j yt yt j

T=










= + −

−

= + −∑ ∑
1 2

1

1 , 

the standard errors depend on the exact hypothesis being tested, but if it is that 

ρ j    j =  I,  .......∞  are zero, they will be T-½ 

 

In the following arguments, we will generally treat random variables as having zero 

expectation. 

 

There is a great deal of dependence in stock prices and very little in returns. 
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A response to this emerged in the theory of efficient markets.  Here it is argued that the 

change in stock prices should be independent over time. 

 

If it were not true, opportunities for profit would emerge and these should have been 

competed away. 

 

This leads to a particular type of independence, viz.  the “unit root” or “random walk” 

model. 

 y yt t= +−1 et  (1) 

 

and then the question has a dual nature:  does yt have the structure of (1) and is ∆yt 

independent? 

 

This is a time series view of the hypothesis “Accounting/Finance” would take an ‘event 

study’ viewpoint, studying the reaction of yt to various events to assess whether all the 

information is incorporated into prices.  To do the latter requires detailed individual stock 

behaviour.  Here, new “events” are subsumed into et. 

 

Two different issues need to be addressed.  The first has been investigated in a number of 

ways. 

 

writing (1) as 

 y y tt t= +−ρ ρ1  (2) 

 

we might test H0: ρ = 1 vs H1: ρ < 1 using yt and yt-1. 

 

This leads to tests for a unit root of the Phillips-Peron, Dickey-Fuller type which feature in 

many econometric programs. 
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The evidence for a unit root in stock prices and no unit root in stock returns is very strong. 

 

1.2 Are financial series independently distributed over time? 

 The evidence suggest that there is a unit root in stock prices and exchange rates, 

that there is not one in earnings, and that the evidence is mixed for exchange rates, 

but we have not yet addressed the issue of dependence in ∆yt = et which is an 

integral part of the efficient markets’ hypothesis. 

 

 There are a number of ways in which this issue has been addressed. 

 

 (a) Computation of the auto-correlation function of  ∆yt followed by tests that 

serial correlation coefficients are zero.  Generally, these re found to be 

zero, except if data has been measured such that there is an overlapping 

component. 

 

 (b) A different viewpoint is to be had by thinking of the impact of news et.  

With no dependence, the short-run and long-run impact of news is the 

same, i.e., 
dyt

det = 1    
∂

∂
y

et
t d+ = 1 

 

  However, if the ∆yt process has dependence, e.g. is a MA(1)εt + αεt-1, then 

(1) can be reformulated as ( )∂
∂ε

∂
∂ε αyt

t
y

t
t= = ++∞1 1    

 

  In general, for ∆yt being an MA(q), 

( )ε α ε ε α ε
∂

∂ αt t q t q et d d qt
yt+ − + + − = + + + +−

+∞
, ......... , ....1 1 21 1 , leading 

to the idea of testing for dependence by testing Ho:  α1 + α2 + αq = 0.  

Testing if the sum of α‘s is zero is likely to be more powerful than testing 

if the individual α‘s are zero, because only a scalar is being tested and it is 

more likely to be precisely estimated than any of its components. 
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  Fama and French (1988) “Permanent and Temporary Components of Stock 

Prices”, Journal of Political Economy, 96, pp246-273, work with a model 

of permanent and temporary components in a series and concentrate upon 

the question of whether there is a temporary component in returns or not. 

 

  Fama and French (1988) form yt+k - yt and yt - yt-k, i.e., kth forward and 

backward being differences of the series yt, and to regress the former or the 

latter.  With yt as the log of stock prices rt+k = yt+k = yt is the continuously 

compounded kth period return and it will be the sum of the one-period 

returns. 

 

  r y y r y y etct k t k t k t k t k t k+ + + − + − + − + −= − = −1 1 1 2, , . 

 

  In large samples, the numerator of the regression coefficient will tend to  

  ( )( )E r rt jj

k

t jj

k

+= −=
−∑ ∑



1 0

1
 and Fama and French are therefore testing if this 

is  

  zero.  To appreciate what is being tested set k= 1, 2, 3, giving 

 

  ( ) ( )E r r kt t+ = =1 1 1γ  

 

  ( )( )[ ] ( )E r r r r r kt t t t t+ + − −+ + + = + + =1 2 1 2 1 2 32 2γ γ γ  

 

  ( )( )[ ] ( )E r r r r r r kt t t t t t+ + + − −+ + + + = + + + + =1 2 3 1 2 1 2 3 4 32 3 2 3γ γ γ γ γ  

 

  Thus, one is essentially testing if a weighted average of the auto-

covariances is zero, rather than whether the auto-covariances themselves 

are.  The reason we test a weighted average is because we are implicitly 
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testing if the scalar var ( )yt
*  is zero.  We get this model because we have a 

particular model of deviations from efficiency in mind. 
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Volatility 

Volatility refers to the movement in an asset price from one point in time to the next.  

Since volatility reflects the uncertainty in expected asset returns, it is central to most 

investment decisions as a proxy for risk.  The measurement and determination of volatility 

has become relatively more important with increased financial innovation, i.e., the 

development of trading instruments designed to neutralise specific forms of risk.  

Unfortunately, volatility is neither uniquely defined, nor is it likely to be constant over 

time.  Some of the work on this topic is summarised in the following slides. 

 

If the current price of an equity is Pt  and the price next period is Pt+1 , the simplest 

definition of volatility is 

 

( )σ t t tP P+ += −1

2

1

2
 (1) 

 

where σ t+1
2  denotes the volatility over the period t t, +1. 

 

Yet there is no unique definition of volatility.  The most general definition is that volatility 

is the expected movement in price from its anticipated value in the next period. 

 

It is often estimated by 

 

( )σ t t t tP E P+ + += −1

2

1 1

2
 (2) 

where E Pt t+1 is the anticipated or expected price of the asset at t+1, based on information 

at t.  Clearly, any definition of volatility depends on the definition of expected price in the 

next period.  In the so-called naive case, where we replace the expected price by its current 

price, that is E P Pt t t+ =1 , we obtain the definition 1. 
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Why is volatility important? 

Volatility reflects the uncertainty in the expected value of an asset.  Hence it becomes one 

measure of the risk premium associated with an asset.  The risk premium can be used in 

many ways, inter alia in the valuation of assets and in the pricing of options conditional on 

the asset.  For these purposes, the volatility which is important is the volatility of returns, 

where returns are defined logarithmically by 

 

R
P D

P
t

t t

t

+
+ +=

+







1

1 1log  (3) 

 

where Dt+1  is the dividend in the period t to t+1.  We define the volatility of returns 

analogously to the volatility of prices, substituting R t  for Pt  in(1) and (2). 

 

One valuation method for equities is the dividend discount model.  In this method, the 

valuation is determined by the expected future dividend stream discounted by a risk-

adjusted discount rate.  The usual method of risk adjustment is obtained using the capital 

asset pricing model.  However, it is also possible to use more direct measures of risk 

adjustment from volatility models, so that the risk-adjusted discounted rate is then 

 

( )ρ σ= +rf g  (4) 

 

where ρ is the risk-adjusted discount rate, rf is the risk-free rate and g(σ) is a function of 

the average volatility of the asset.  The function g depends on the volatility model used. 

 

Options and other derivative assets are also priced on the basis of the average volatility of 

returns on the underlying stock. 

 

What causes volatility? 

Volatility is caused by the reaction of traders to market signals.  These include: 
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1. Information 

 (a) Political, e.g., election announcements, leadership changes. 

 (b) Economics, e.g., balance of payments announcements, interest rate changes. 

 (c) External market, e.g., the effect of Wall Street, and of the futures market on the 

Australian Stock Exchange. 

 (d) Internal market, e.g., earnings announcements, resource discourses. 

 

2. Past Price Changes (leverage effects) 

 It is usually assumed that the volatility of an equity is an increasing function of 

financial leverage.  If the price of equity falls, the consequent leverage effects typically 

induce greater volatility. 

 

3. Expectations of Volatility 

 For most financial variables, the current value of the variable is often an important 

determinant of the next period's value, simply because expectations are partially self-

fulfilling.  This is no less true for volatility.  In periods of high uncertainty, we tend to 

expect this uncertainty to persist so that volatility will depend on previous volatility. 

 

4. Noise Trading 

 Many traders may trade on noise (unsystematic or random signals) as if it were 

information.  This imparts a common level of volatility to financial markets. 

 

How to model volatility? 

The principal reason for modelling and not just estimating volatility is to forecast it for use 

in option pricing models and in the determination of risk premia. 

 

Clearly, any model of volatility proceeds in two stages:  we must first specify the expected 

returns process E Rt t+1 and then specify the process governing volatility.  The expected 
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returns process may be a constant ( )E R Ct t+ =1  as in Black-Scholes pricing, or of some 

other form, such as a martingale process ( )E R Rt t t+ =1 .  A point estimate of volatility of 

returns in the period t,t+1 is then given by $u t+1
2  where 

 

$ $u R E Rt t t t+ + += −1 1 1 (5) 

 

the estimated deviation of returns from their estimated anticipated values. 

 

There are then essentially two methods for modelling volatility: 

 

1. The easiest method is to consider the variable $u t+1
2  and to describe its evolution.  This 

is called the stylised facts model of volatility.  We can for example run regressions 

such as: 

 

a) $ , $ ............ $u a a u a u Vt o t r t r t
2

1
2

1
2= + + + +− −  (6a) 

 

b) $ , ............u a a UNBP a UNINF Vt o t r t t
2

1= + + + +  (6b) 

 

c) $u a at o
2

1= + P E Pt t t− − −−1 2 1,a Vt1 0< +  (6c) 

 

where Vt  is some positive error term. 

 

The first of these regressions is the volatility persistence model, that is the volatility (or its 

estimate) depends on volatility up to r periods before. 

 

The second of these regressions is an information model, asserting that volatility depends 

on unanticipated changes in the balance of payments (UNBP);  and unanticipated changes 

in inflation (UNINF), and other macroeconomic information.  The third regression is a 

leverage effect regression - so if the price falls further than we expect, volatility increases.  
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These models can be combined into a more general model of volatility which includes 

volatility persistence, information effects and leverage effects. 

 

Furthermore, when all the coefficients except for ao  are zero, each model becomes the 

standard historical estimate of volatility used in Black-Scholes, that is: 

 

$u a vt o t
2 = +  (7) 

 

2. A second method is to model the expected return and the volatility simultaneously.  

The advantage here is that the point estimate of volatility in (5) is replaced by a 

population value of volatility which is estimated period by period.  This includes the 

recent set of models referred to as the ARCH and GARCH models.  Briefly, these 

models can be written as: 

 

 ( )R E R ut t t t+ += +1 1  (8a) 

 

 ( )σ t f It+ =1

2  (8b) 

 

 where I t  is the information set at time t, which includes past returns, past values of the 

innovations u t
2 , and past values of volatilities σ t

2 . 

 

 The important point in ARCH-GARCH models is that volatility and not just a point 

estimate of volatility is being modelled - furthermore, (8a) and (8b) are estimated 

jointly. 

 

 Within ARCH-GARCH models, there are various ways to represent (8b).  The 

simplest is the linear ARCH model, which is specified as: 

 

 σ α α αt o t tu qu q+ += + + + −1
2 2

1
2, ..........  (9) 



DEA/ECF5103/lect3.Doc/30 Lecture 3 

12/08/2008 

 

 

 In this case, volatility is prescribed to be a function of past squared innovations in the 

expected returns equation.  This will capture the effect that in periods of high 

uncertainty (when u t  is large), volatility will also be high.  Obviously, more elaborate 

models of volatility are possible.  One generalisation is to the linear GARCH model, 

given by: 

 

 σ α α β σt o i t i

i

a

j t j

j

p

u+ + −
=

+ −
=

= + +∑ ∑1
2

1
2

1

1
2

1

 (10) 

 where the volatility depends on both past squared innovations and past volatilities.  

This captures the expected volatility model referred to above.  The process in (9) is 

called an ARCH (q) volatility model, and the process in (10) a GARCH (p,q) volatility 

model.  There are several important points associated with these models. 

 

1. Estimation 

These models are readily estimated using maximum likelihood techniques.  For example, 

they are standard routines in many recent packages, including TSP version 4.2. 

 

2. Positivity 

Volatility is a positive variable.  This means that all the parameters α i and β j should be 

positive.  In practice, this may be difficult to ensure except by using complicated 

estimation techniques.  There are two easy ways: 

 

 1. If the lag length of the ARCH-GARCH process is kept short ( )p q1 1 1=  or 2 , the 

parameters usually remain positive. 

 

 2. We can reparametise the process.  For the ARCH process, rewrite as: 

 

 ( )σ α α αt o t t qu qu+ + −= + + +1
2

1
2

1
2exp .......  (11) 
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  where exp refers to the exponential function. In this case, the volatility is ensured 

to be positive and the process (11) is an example of a special class of volatility 

models called EGARCH. 

 

3. Extensions 

The ARCH-GARCH models can be expanded to include terms other than past innovations 

and past volatilities;  for example, the leverage and information models of (6b) and (6c). 

 

For example, the ARCH form of (6b) would be  

 

σ α α α αt o t t tu UNBP UNINF+ = + + +1
2

1
2

2 3  (12) 

 

4. ARCH or GARCH 

A GARCH (1,1) process is algebraically equivalent to an ARCH process with an infinite 

lag structure, so that long ARCH processes are usually better represented by a short 

GARCH process. 

 

5. Frequency 

ARCH and GARCH models are especially suitable for high frequency data, i.e., where the 

interval ( )t t1 1+  is one day or less.  In particular, this includes data sampled at 15-minute 

intervals, at hourly intervals, and closing prices on successive days.  ARCH and GARCH 

models are typically not suitable for models of monthly volatility, essentially because the 

volatility persistence tends to disappear in monthly data.  Since for option pricing, the 

estimate of volatility required is that obtained as the time interval becomes small (the 

instantaneous volatility), ARCH-GARCH models are quite appropriate. 
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````````````````````` 

T Bollershev, R Y Chou, K F Kroner, “Arch modelling in Finance:  A review of the 

theory and empirical evidence”, Journal of Econometrics (1992), pp5-59. 

 

Although volatility clustering has a long history as a relevant empirical regularity 

characterising high frequency speculative prices, it was not until recently that applied  

researchers in finance have explicitly recognised the importance of modelling time 

varying second order moments. 

 

A key factor in most of these studies has been the Autoregressive Conditional 

Heteroskedasticity model (ARCH) introduced by Engle (1982).  The paper provides an 

overview of developments in the formulation of ARCH models and a survey of some of 

the numerous empirical applications. 

 

 - Uncertainty plays a central role in finance. 

- The uncertainty of speculative prices changes through time. 

- One of the most prominent tools for modelling changing variances is ARCH. 

 

ARCH 

 

Following Engle (1982) we refer to all discrete time stochastic processes (Et) of the form 

 Et = Ztσt (1) 

 

 Zt.i.i.d.,  E (Zt) = 0, Var (Zt) = 1 (2) 

 

With σt a time-varying, positive, and measurable function of the time t-1 information set, 

as an ARCH model.  To begin, we consider Et as a univariate process. 
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By definition, Et is serially uncorrelated with mean zero, but the conditional variance of Et 

equals σt
2 , which may be changing through time. 

 

In most applications, Et will correspond to the innovation in the mean for some stochastic 

process, say (yt) where 

 

 yt = g(xt-1,b) + ct (3) 

 

and g(xt-1,b) denotes a function of xt-1 and the parameter vector b, where xt-1 is in the time 

t-1 information set.  To simplify the exposition, in most of the discussion below we shall 

assume that Et itself is observable. 

 

Let f(Zt) denote the density function for Zt and let θ be the vector of all the unknown 

parameters in the model.  By the prediction error decomposition, the log-likelihood 

function for the sample Et, Et-1, ......E, becomes apart from initial conditions 

 

 ( ) ( )[ ]L f E t t t
t

T

θ σ σ= −−

=
∑ log log1

1

 (4) 

 

The second term in the summation is a Jacobian term arising from the transformation from 

Zt to Et.  Note that (4) also defines the sample log-likelihood for Yτ, Yτ-1...................,Y1, 

as given by (3).  Given a parametric representation for Zt, maximum likelihood estimates 

for the parameters of interest can be computed from (4) by a number of different 

numerical optimisation techniques. 

 

The above is very general and allows for a wide variety of models. 

 

- The economic theory explaining the conditional variances is very limited. 
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The linear ARCH (q) model 

 

As Engle (1982) suggests in his seminal paper, one possible parameterisation for σt
2  is to 

express σt
2  as a linear function of past squared values of the process. 

 

 ( )σ α αt i t i
i

q

tw E w L E2 2

1

2= + = +−
=
∑  (5) 

 

where w>0 and α i ≥ 0, and L denotes the lag operator.  This model is known as the linear 

ARCH (q) model.  With financial data it captures the tendency for volatility clustering, 

i.e., for large (small) price changes to be followed by other large (small) price changes, but 

of unpredictable sign. 

 

- In order to reduce the number of parameters and ensure a monotonic declining effect of 

more distant shocks, an ad hoc linearly declining lag structure was often imposed in many 

early applications of this model. 

 

Maximum likelihood (ML) based inference procedures for the ARCH class of models 

under this distributional assumption are discussed in Engle (1982) and Pantula (1985). 

 

 

The Linear GARCH (p.q) Model 

 

An alternative and more flexible log structure is often provided by the Generalised ARCH 

or GARCH (p.q) model in Bollershev (1986). 

 

 ( ) ( )σ α β σ α β σt i t i
i

a

i t i
i

p

t tw E w L E L2 2

1

2

1

2 2= + + = + +−
=

−
=

∑ ∑  (7) 
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To ensure a well-defined process, all the parameters in the infinite order AR 

representation ( ) ( )( ) ( )σ φ β αt t tL E L L E2 2 1 21= = − −
 must be non-negative where it is 

assumed that the roots of the polynomial β(λ)=1 lie outside the unit circle. 

 

For a GARCH (1.1) process, this amounts to ensuring that both α1 and β1 are non-

negative.  It follows also that Et is covariance stationary if and only if α(1) + β(1)<1. 

 

Non-linear and non-parametric ARCH 

 

In the GARCH (p.q) model (7), the variance depends on the magnitude and not on the sign 

of Et.  This is somewhat at odds with empirical work on the behaviour of stock prices 

which suggest that leverage effect may be present. 

 

In the Exponential GARCH (p.q) or GARCH (p.q) model introduced by Nelson (1990), 

σt
2  is an asymmetric function of past Ets as defined by (1) and (2) and 

 

log logσ α φ γ β σt i t i t i t i
i

q

i t i
i

p

w Z Z E Z2

1

2

1

= + + −







 


+− − −

=
−

=
∑ ∑  (8) 

 

Unlike the linear GARCH model in (7), there are no restrictions on the parameters α1 and 

β1 to ensure non-negativity of the conditional variances.  Thus, the representation in (8) 

resembles an unrestricted ARMA (p.q) model for log σt
2 .  If α φi < 0, the variance tends to 

rise (fall) when Et-i is negative (positive) in accordance with the empirical evidence for 

stock returns. 

 
 

 

 


