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 The great workhorse of applied econometrics is the least squares 

model. The basic version of the model assumes that, the expected value of all 

error terms, in absolute value, is the same at any given point.  Thus, the 

expected value of any given error term, squared, is equal to the variance of all 

the error terms taken together. This assumption is called homoskedasticity. 

Conversely, data in which the expected value of the error terms is not equal, 

in which the error terms may reasonably be expected to be larger for some 

points or ranges iof the data than for others, is said to suffer from 

heteroskedasticity.  

 It has long been recognized that heteroskedasticity can pose problems 

in ordinary least squares analysis. The standard warning is that in the 

presence of heteroskedasticity, the regression coefficients for an ordinary 

least squares regression are still unbiased, but the standard errors and 

confidence intervals estimated by conventional procedures will be too narrow, 

giving a false sense of precision.  However, the warnings about 

heteroskedasticity have usually been applied only to cross sectional models, 

not to time series models. For example, if one looked at the cross-section 

relationship between income and consumption in household data, one might 

expect to find that the consumption of low-income households is more closely 

tied to income than that of high-income households, because poor households 

are more likely to consume all of their income and to be liquidity-constrained.  
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In a cross-section regression of household consumption on income, the error 

terms seem likely to be systematically larger for high-income than for low-

income households, and the assumption of homoskedasticity seems 

implausible. In contrast,  if one looked at an aggregate time series 

consumption function, comparing national income to consumption, it seems 

more plausible to assume that the variance of the error terms doesn’t 

changed much over time. 

 A recent developments in estimation of standard errors, known 

as “robust standard errors,” has also reduced the concern over 

heteroskedasticity. If the sample size is large, then robust standard errors 

give quite a good estimate of  standard errors even with heteroskedasticity. 

Even if the sample is small, the need for a heteroskedasticity correction that 

doesn’t affect the coefficients, but only narrows the standard errors 

somewhat, can be debated.   

 However, sometimes the key issue is the variance of the error terms 

itself. This question often arises in financial applications where the 

dependent variable is the return on an asset or portfolio and the variance of 

the return represents the risk level of those returns. These are time series 

applications, but it is nonetheless likely that heteroskedasticity is an issue. 

Even a cursory look at financial data suggests that some time periods are 

riskier than others; that is, the expected value of error terms at some times is 

greater than at others. Moreover, these risky times are not scattered 
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randomly across quarterly or annual data. Instead, there is a degree of 

autocorrelation in the riskiness of financial returns. ARCH and GARCH 

models, which stand for autoregressive conditional heteroskedasticity and 

generalized autoregressive conditional heterosjedasticity, have become 

widespread tools for dealing with  time series heteroskedastic models such as 

ARCH and GARCH. The goal of such models is to provide a volatility 

measure – like a standard deviation -- that can be used in financial decisions 

concerning risk analysis, portfolio selection and derivative pricing. 

 

ARCH/GARCH Models 

 

 Because this paper will focus on financial applications, we will use financial 

notation.  Let the dependent variable be labeled 
t

r , which could be the return 

on an asset or portfolio. The mean value m and the variance h will be defined 

relative to a past information set.  Then, the return r in the present will be 

equal to the mean value of r (that is, the expected value of r based on past 

information) plus the standard deviation of r (that is, the square root of the 

variance) times the error term for the present period. 

 The econometric challenge is to specify how the information is used to 

forecast the mean and variance of the return, conditional on the past 

information. While many specifications have been considered for the mean 

return and have been used in efforts to forecast future returns, rather simple 
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specifications have proven surprisingly successful in predicting conditional 

variances.  The most widely used specification is the GARCH(1,1) model 

introduced by Bollerslev (1986) as a generalization of Engle(1982). The (1,1) 

in parentheses is a standard notation in which the first number refers to how 

many autoregressive lags appear in the equation, while the second number 

refers to how many lags are included in the moving average component of a 

variable. Thus, a GARCH (1,1) model for variance looks like this:  

 

 ω α ε β− − −= + +2
1 1 1t t t th h h .  

 

This model forecasts the variance of date t return as a weighted average of a 

constant, yesterday’s forecast, and yesterday’s squared error.  Of course, if 

the mean is zero, then from the surprise is simply −

2
1tr .   

 

Thus the GARCH models are conditionally heteroskedastic but have a 

constant unconditional variance. 

  

Possibly the most important aspect of the ARCH/GARCH model is the 

recognition that volatility can be estimated based on historical data and that 

a bad model can be detected directly using conventional econometric 

techniques.  A variety of statistical software packages like Eview and others?and others?and others?and others? 

are available for implementing GARCH and ARCH approaches.  
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A Value at Risk Example 

 

 Applications of the ARCH/GARCH approach are widespread in 

situations where volatility of returns is a central issue. Many banks and 

other financial institutions use the idea of “value at risk” as a way to measure 

the risks faced by their portfolios. The 1% value at risk is defined as the 

number of dollars that one can be 99 percent certain exceeds any losses for 

the next day. Let’s use the GARCH (1,1) tools to estimate the 1 percent value 

at risk of a $1,000,000 portfolio on March 23, 2000.  This portfolio consists of 

50 percent Nasdaq, 30 percent Dow Jones, and 20 percent long bonds. This 

date is chosen to be just before the big market slide at the end of March and 

April. It is a time of high volatility and great anxiety.   

First, we construct the hypothetical historical portfolio. (All 

calculations in this example were done with the Eviews software program.)  

Figure 1 shows the pattern of the Nasdaq, Dow Jones, and long bonds. In 

Table 1, we present some illustrative statistics for each of these three 

investments separately, and for the portfolio as a whole in the final column.  

 

Then we forecast the standard deviation of the portfolio and its 1 

percent quantile. We carry out this calculation over several different time 
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frames: the entire 10 years of the sample up to March 23, 2000; the year 

before March 23, 2000; and from January 1, 2000 to March 23, 2000. 

Consider first the quantiles of the historical portfolio at these three 

different time horizons.  Over the full ten-year sample, the 1 percent quantile 

times $1,000,000 produces a value at risk of $22,477.  Over the last year the 

calculation produces a value at risk of #24, 653 – somewhat higher, but not 

enormously so. However,  if the first quantile is calculated based on the data 

from January 1, 2000 to March 23, 2000, the value at risk is $35,159.  Thus, 

the level of risk has increased dramatically over the last quarter.  

 The basic GARCH(1,1) results are given in Table 2 below.  Notice that 

the coefficients sum up to a number slightly less than one.  The forecast 

standard deviation for the next day is 0.014605, which is almost double the 

average standard deviation of .0083 presented in the last column of Table 1.  

If the residuals were normally distributed, then this would be multiplied by 

2.326348 giving a VaR=$33,977.  As it turns out, the standardized residuals, 

which are the estimated values of { }tε , have a 1% quantile of 2.8437, which is 

well above the normal quantile.  The estimated 1% VaR is $39,996.  Notice 

that this VaR has risen to reflect the increased risk in 2000. 

 

  

Extensions and Modifications of GARCH  
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 The GARCH(1,1) is the simplest and most robust of the family of volatility 

models.  However, the model can be extended and modified in many ways.  

We will briefly mention three modifications.  

 The GARCH (1,1) model can be generalized to a GARCH(p,q) model; 

that is, a model with additional lag terms.  Such higher order models are 

often useful when a long span of data is used, like several decades of daily 

data or a year of hourly data.  With additional lags, such models allow both 

fast and slow decay of information.  A particular specification of the 

GARCH(2,2) by Engle and Lee(1999), sometimes called the component model, 

is a useful starting point to this approach.  

 Another version of GARCH models takes an asymmetric view by 

estimating  positive and negative returns separately. Typically, higher 

volatilities follow negative returns than positive returns of the same 

magnitude. Two models which take this asymmetric approach are the 

TARCH model – threshhold ARCH -- attributed to  Zakoian() and Glosten 

Jaganathan and Runkle (1993), and the EGARCH model of Nelson(1991

 It is also possible to incorporate exogenous variables into the GARCH 

equation.     Like what variables? Like what variables? Like what variables? Like what variables?     

 Software packages like Eviews offer a variety of tests to check 

specifications of ARCH/GARCH models or to choose between models. 

 

Conclusion 
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Volatility models have been applied in a wide variety of applications. In most 

cases, volatility is itself an interesting aspect of the problem.  In some cases, 

volatility is an input used for purposes of measurement, like in the example 

of estimating value at risk given earlier. In other cases, volatility may be a 

causal variable, as in models expected volatility is a determinant of expected 

returns.     
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Nasdaq,Dow Jones, and Bond Returns 

Figure 1 
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Table 1 

Portfolio Data 

Sample: 3/23/1990 3/23/2000 

     

 NQ DJ RATE PORT 

     

 Mean  0.0009  0.0005  0.0001  0.0007 

 Std. Dev.  0.0115  0.0090  0.0073  0.0083 

 Skewness -0.5310 -0.3593 -0.2031 -0.4738 

 Kurtosis  7.4936  8.3288  4.9579  7.0026 
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Table 2 

GARCH(1,1) 

Dependent Variable: PORT 
Sample(adjusted): 3/26/1990 3/23/2000 
Convergence achieved after 16 iterations 
Bollerslev-Wooldrige robust standard errors & covariance 

     

        Variance Equation 
     

C 0.0000 0.0000 3.1210 0.0018 
ARCH(1) 0.0772 0.0179 4.3046 0.0000 

GARCH(1) 0.9046 0.0196 46.1474 0.0000 
     

S.E. of regression 0.0083     Akaike info criterion -6.9186 
Sum squared resid 0.1791     Schwarz criterion -6.9118 
Log likelihood 9028.2809     Durbin-Watson stat 1.8413 
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