Gretl Examples Econometrics 4/4/2013

| have selected some material from Adkins’ manual on GRETL to illustrate some of the concepts applied
in this week’s lecture.

Chapter

Heteroskedasticity

The simple linear regression models of chapter 2 and the multiple regression model in Chapter
5 can be generalized in other ways. For instance, there is no guarantee that the random variables
of these models (either the y; or the &) have the same inherent variability. That is to say, some
observations may have a larger or smaller variance than others. This deseribes the condition known
as heteroskedasticity. The general linear regression model is shown in equation (8.1) below.
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where y; is the dependent variable, z; is the i™® observation on the k** independent variable,
k=2.3,....K, & is random error, and 31, fa,.... Sk are the parameters vou want to estimate.
Just as in the simple linear regression model, e;, have an average value of zero for each value of
the independent variables and are uncorrelated with one another. The difference in this model
is that the variance of e; now depends on i, i.e., the observation to which it helongs. Indexing
the variance with the ¢ subsecript is just a way of indicating that observations may have differ-
ent. amounts of variability associated with them. The error assumptions can be summarized as
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The intercept and slopes, [y, Fa, ..., Bk, are consistently estimated by least squares even if
the data are heteroskedastic. Unfortunately, the usual estimators of the least squares standard
errors and tests based on them are inconsistent and invalid. In this chapter, several ways to detect
heteroskedasticity are considered. Also, statistically valid wavs of estimating the parameters of 8.1
and testing hyvpotheses about the #s when the data are heteroskedastic are explored.

8.1 Food Expenditure Example

First, a simple model of food expenditures is estimated using least squares. The model is

food_exp; = 31 + Poincome; +e; i=1,2,..., N (8.2)



where food_exp; is food expenditure and ineome; is income of the i*" individual. When the errors
of the model are heteroskedastic, then the least squares estimator of the coefficients is consistent.
That means that the least squares point estimates of the intercept and slope are useful. However,
when the errors are heteroskedastic the usual least squares standard errors are inconsistent and
therefore shonld not be used to form confidence intervals or to test hypotheses.

To use least squares estimates with heteroskedastic data, at a very minimum, vou'll need a
consistent estimator of their standard errors in order to construct valid tests and intervals. A
simple computation proposed by White accomplishes this. Standard errors computed using White's
technique are loosely referred to as robust, though one has to he careful when using this term;
the standard errors are robust to the presence of heteroskedasticity in the errors of model (but not
necessarily other forms of model misspecification).

Open the food. gdt data in gretl and estimate the model using least squares.

1 open "@gretldir\data\poe\food.gdt"
2 ols food_exp const income
3 gnuplot food_exp income --linear-fit

This vields the usual least squares estimates of the parameters, but produces the wrong standard
errors when the data are heteroskedastic. To get an initial idea of whether this might be the case a
plot of the data is generated and the least squares line is graphed. If the data are heteroskedastic
with respect to income then vou will see more variation around the regression line for some levels
of income. The graph is shown in Figure 8.1 and this appears to be the case. There is significantly
more variation in the data for high incomes than for low.

To obtain the heteroskedasticity robust standard errors, simply add the --robust option to the
regression as shown in the following gretl script. After issuing the ——robust option, the standard
errors stored in the accessor $stderr(income) are the robust ones.

ols food_exp const income --robust

# confidence intervals (Robust)

scalar 1b = $coeff(income) - critical(t,$df,0.025) * $stderr{income)
scalar ub = Jcoeff(income) + critical(t,$df,0.025) * fstderr(income)
printf "\nThe 95%}% confidence interval is (%.3f, %.3f).\n",1lb,ub

L

In the seript, we have used the critical(t,$df,0.025) function to get the desired critical value
from the i-distribution. Remember, the degrees of freedom from the preceding regression are stored
in $df. The first arcument in the funetion indicates the desired distribution, and the last is the
desired right-tail probability («/2 in this case).

The script produces
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Figure 8.1: Plot of food expenditures against income with least squares fit.

The 95% confidence interval is (6.391, 14.028).

This can also be done from the pull-down menus. Select Model>0rdinary Least Squares (see
Figure 2.6) to generate the dialog to specify the model shown in Figure 8.2 below. Note, the check
hox to generate ‘robust standard errors’ is circled. You will also notice that there is a button
labeled Configure just to the right of the ‘Robust standard errors’ check box. Clicking this button
reveals a dialog from which several options can be selected. In this case, we can select the particular
method that will be used to compute the robust standard errors and even set robust standard errors
to be the default computation for least squares. This dialog box is shown in Figure 8.3 below.

To reproduce the results in Hill et al. (2011), you’ll want to select HC1 from the pull-down list.
As you can see, other gretl options can be selected here that affect the default behavior of the
program. The particular variant it uses depends on which dataset structure you have defined for
your data. If none is defined, gretl assumes youn have cross-sectional data.

The model results for the food expenditure example appear in the table below. After estimating
the model using the dialog, you can use Analysis>Confidence intervals for coefficients to
generate 95% confidence intervals. Since you used the robust option in the dialog, these will be
hased on the variant of White’s standard errors chosen using the ‘configure’ button. In this case, T
chose HC3, which some suggest performs slightly better in small samples. The result is:

VARIAELE COEFFICIENT 95% CONFIDENCE INTERVAL
const 83.4160 25.4153 141,417
income 10.2096 6.39125 14.0280



OLS, using observations 1-40
Dependent variable: food_exp
Heteroskedasticity-robust standard errors, variant HC3

Coefficient Std. Error t-ratio p-value

const 83.4160 28.6509 2.9115 0.0060
income 10.2096 1.88619 5.4128 0.0000

Mean dependent var 283.5735 S.D. dependent var 112.6752
Sum squared resid 304505.2 S.E. of regression 89.51700
R? 0.385002 Adjusted R? 0.368818
F(1,38) 29.20889 P-value(F) 3.63e-06

Table 8.1: Least squares estimates with the usual and robust standard errors.

8.2 Detecting Heteroskedasticity

In the discussion above we used a graph of the data and the regression function to give us an
initial reading of whether the data are heteroskedastic. Residual plots are equally useful, but some
care must be taken in generating and interpreting them. By their very nature, plots allow you to
‘see’ relationships one variable at a time. If the heteroskedasticity involves more than one variable
they may not be very revealing.

In Figure 8.4 is a plot of the least squares residuals against income. It appears that for larger
levels of income there is much higher variance in the residuals. The graph was generated from the
model window by selecting Graphs>Residual plot>Against income. I also right-clicked on the
graph, chose Edit and altered its appearance a bit. Summoning the dialog looks like

ngretl:modeld = B
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Of course, you can also generate graphs from a seript, which in this case is:

ols food_exp const income —-robust
series res = $uhat
setinfo res -d "Least Squares Residuals" -n "Residual"

gnuplot res income --output=c:\Temp\olsres

=W




8.3 Lagrange Multiplier Tests

There are many tests of the null hypothesis of homoskedasticity that have heen proposed else-
where. Two of these, based on Lagrange multipliers, are particularly simple to do and useful. The
first is sometimes referred to as the Breusch-Pagan (BP) test. The second test is credited to White.

The null and alternative hypotheses for the Breusch-Pagan test are
Hy:0! =0°
o, : cr? = h(og + ooz + ... a2i8)

The null hypothesis is that the data are homoskedastic. The alternative is that the data are
heteroskedastic in a way that depends upon the variables z;,, i = 2.3,....5. These variables are
exogenous and correlated with the model’s variances. The function h(), is not specified. It could
be anything that depends on its argument, i.e., the linear function of the variables in z. Here are
the steps:

1. Estimate the regression model

2. Save the residuals

3. Square the residuals

4. Regress the squared residuals on 24, 1 = 2.3,..., 5.

5. Compute NR? from this regression and compare it to the o level critical value from the
¥2(S — 1) distribution.

The gretl seript to perform the test manually is

ols food_exp const income
series sg_shat = $uhat*3uhat
ols sg_shat const income
scalar NR2 = $tresg

pvalue ¥ 1 NR2

= m b3 e

e

The only new item in this seript is the use of the accessor, $trsq. This is the saved value of NR?
from the previously estimated model. The output from the seript is

1 Replaced scalar NR2 = 7.38442
2 Chi-square(1l): area to the right of 7.38442 = 0.00657911
3 (to the left: 0.983421)

The p-value is less than 5% and we would reject the homoskedasticity null at that level. The
heteroskedasticity seen in the residual plots appears to be confirmed.



1 ols food_exp const income
2 modtest --breusch-pagan

Produces

Breusch-Pagan test for heteroskedasticity
OLS, using observations 1-40
Dependent variable: scaled uhat™2

coefficient std. error t-ratio p-value

CONSt -0.756849 0.633618 -1.195 0.2396
income 0.0896185 0.0305534 2,933 0.0057 4+

Explained sum of sgquares = 14.8379

Test statistic: LM = 7.343935,
with p-value = P(Chi-square(1) > 7.343935) = 0.006729

The functionality of modtest --breusch-pagan is limited in that it will include every regressor
in the model as a z. It matches the result we derived manually because the model only includes
income as the regressor. The modtest --breusch-pagan uses it as z. This means that vou can't
test a subset of the regressors with this function, nor can vou use it to test for heteroskedasticity
of exogenous variables that are not included in the regression function. In either of these cases, use
the mamal method deseribed above; it is very easy to do.

8.3.1 The White Test

White’s test is in fact just a minor variation on the Breusch-Pagan test. The null and alternative
hypotheses are

Hy:0? =0 foralli

H]!O’?;éﬂ';‘-} for at least 11 £ j

This is a composite alternative that captures every possibility other than the one covered by the
null. If you know nothing about the nature of heteroskedasticity in your data, then this is a
good place to start. The test is very similar to the BP test. In this test, the heteroskedasticity
related variables (25, ¢ = 2,3, ..., 5) include each non-redundant regressor, its square, and all cross
products between regressors. See POFEJ for details. In the food expenditure model there is only
one continuous regressor and an intercept. So, the constant squared and the eross product between
the constant and income are redundant. This leaves only one unique variable to add to the model,
income squared.



In gretl generate the squared value of income and regress the squared residuals from the model
on income and its square. Compute NR? from this regression and compare it to o level critical
value from the x2(S — 1) distribution. As is the case in all the LM tests considered in this book,
N is the number of observations in the second or auxiliary regression.

As with the BP test there is a built-in function that computes White's test. It generates all
of the squares and unique cross-products to add to the model. The seript to do both mannal and
built-in tests is found helow:

ols food_exp const income

series sq_sehat = $uhat#*3Fuhat
series sq_income = income”2

ols sq_ehat const income sg_income
s scalar NR2Z = $trsg

& pvalue X 2 NR2

& W e

& ols food_exp const income --guiet
9 modtest --white --quiet

The results from the two match perfectly and only that from the built-in procedure is produced
below:

White’s test for heteroskedasticity
Test statistic: TR™2 = T.5E5R0TO,

with p-value = P(Chi-square(2) > 7.555079) = 0.022879

The homoskedasticity null hypothesis is rejected at the 5% level.



8.4 Heteroskedastic-Consistent Standard Errors

The least squares estimator can be used to estimate the linear model even when the errors are
heteroskedastic with good results. As mentioned in the first part of this chapter, the problem with
using least squares in a heteroskedastic model is that the usual estimator of precision (estimated
variance-covariance matrix) is not consistent. The simplest way to tackle this problem is to use
least squares to estimate the intercept and slopes and use an estimator of least squares covariance
that is consistent whether errors are heteroskedastic or not. This is the so-called heteroskeedasticity
robust estimator of covariance that gretl uses.

In this example, the food expenditure data is used to estimate the model using least squares
with both the usual and the robust sets of standard errors. Start by estimating the food expen-
diture model using least squares and add the estimates to the model table the estimates (Usual).
Reestimate the model using the —-robust option and store the results (modeltab add).

ols food_exp const income --gquiet
modeltab add

ols food_exp const income --robust --gquiet
modeltab add

modeltab show

Lo

o

The model table, which 1 edited a bit, is

OLS estimates
Dependent variable: food_exp

(Usual) (HC3 Robust)

const 72.96% 72.96%*
(38.83) (10.01)
income  11.50%" 11.50%*
(2.508) (2.078)
i 20 20

'Replace sortby income with dsortby income to sort the sample by income in descending order.



R 0.5389 0.5380
‘ —109.1 —100.1

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level

Notice that the coefficient estimates are the same, but that the estimated standard errors are
different. Interestingly enough, the robust standard error for the slope is actually smaller than the
usual one!

A mumber of commands behave differently when used after a model that employs the —-robust
aption. For instance, the omit and restrict commands will use a Wald test instead of the usnal one
based on the difference in sum of squared errors.

The confidence intervals can be computed manually using saved results from the regression or
from the model window of a model estimated through the GUI. Estimate the model using ols from
the GUIL Select Analysis > Confidence Intervals for coefficients in the model window
to generate confidence intervals based on the HCCME.

When you estimate the model, check the ‘Robust standard errors’ option (see Figure 8.2) and
choose the ‘Configure’ button to select one of the options for bias correction using the pull-down
menu for cross-sectional data as shown earlier in Figure 8.3,

These robust standard errors are obtained from what is often referred to as the heteroskedasticity-
consistent covariance matrix estimator (HCCME) that was proposed by Huber and rediscovered
by White. In econometrics, the HCCME standard errors may be referred to as White’s standard
errors or Huber/White standard errors. This probably accounts for the tab’s name in the dialog
box.

Since least squares is inefficient in heteroskedastic models, you'd think that there might he
another unbiased estimator that is more precise. And, there is. The generalized least squares
(GLS) estimator is, at least in principle, easy to obtain. Essentially, with the GLS estimator of the
heteroskedastic model, the different error variances are used to reweigh the data so that they are
all have the same (homoskedastic) variance. If the data are equally variable, then least squares is
efficient!

8.5 Weighted Least Squares

If you know something about the structure of the heteroskedasticity, you may be able to get more
precise estimates using a generalization of least squares. In heteroskedastic models, observations
that are observed with high variance don’t contain as much information about the location of



the regression line as those observations having low variance. The basic idea of generalized least
squares in this context is to reweigh the data so that all the observations contain the same level
of information (i.e., same variance) about the location of the regression line. So, observations
that contain more noise are given small weights and those containing more signal a higher weight.
Reweighing the data in this way is known in some statistical disciplines as weighted least squares.
This descriptive term is the one used by gretl as well.

Suppose that the errors vary proportionally with x; according to
var(e;) = crgfci (8.5)

The errors are heteroskedastic since each error will have a different variance, the value of which
depends on the level of x;. Weighted least squares reweighs the observations in the model so that
each transformed observation has the same variance as all the others. Simple algebra reveals that

var(e;) = o (8.6)

T

So, multiply equation (8.1) by 1/,/7; to complete the transformation. The transformed model is
homoskedastic and least squares and the least squares standard errors are statistically valid and
efficient.

Gretl makes this easy since it contains a function to reweigh all the ohservations according to
a weight vou specifv. The command is wls, which naturally stands for weighted least squares! The
only thing you need to be careful of is how gretl handles the weights. Gretl takes the square root
of the value you provide. That is, to reweigh the variables using 1/,/7; vou need to use its square
1/x; as the weight. Gretl takes the square root of w for you. To me, this is a bit confusing, so
you may want to verify what gretl is doing by manually transforming y, =, and the constant and
running the regression. The script file shown below does this.

In the example, you first have to create the weight, then call the function wls. The script
appears below.

open "@gretldirh\data‘\poe\food.gdt"

#GLS using built in function

series w = 1/income

wls w food_exp const income

scalar 1b = $coeff(income) - critical(t,$df,0.025) * $stderr(income)
scalar ub = $coeff(income) + critical(t,$df,0.025) * $stderr(income)
printf "\nThe 95%} confidence interval is (%.3f, %.3f).\n",1b,ub

#GLS using OLS on transformed data
series wi 1/sqrt(income)

series ys = wi*food_exp

series s = Wi*x

series cs = wi

ols ys cs xs

10



The first arcument after wls is the name of the weight variable. Then, specify the regression to
which it is applied. Gretl multiplies each variable (including the constant) by the sgquare root of
the given weight and estimates the regression using least squares.

In the next block of the program, w; = 1/,/7; is created and used to transform the dependent
variable, x and the constant. Least squares regression using this manually weighted data vields
the same results as you get with gretl’s wls command. In either case, yvou interpret the output of
weighted least squares in the usual way.

The weighted least squares estimation yields:

Model 6: WLS, using observations 1-40
Dependent. variable: food_exp
Variable used as weight: w

Coefficient Std. Error t-ratio  p-value

const 78.6841 23.788T 3.3076  0.0021
income 10.4510 1.38589 7.5410 0.0000

Statistics based on the weighted data:

Sum squared resid 13359.45 S.E. of regression  18.75006

R? 0.599438 Adjusted R? 0.588897
F(1,38) 56.86672 P-value(F) 4.61e-09
Log-likelihood —172.9795 Akaike criterion  349.9591

Schwarz criterion 353.3368 Hannan—Quinn 351.1804

Statistics based on the original data:

Mean dependent var  283.5735 S.D. dependent var 112.6752
Sum squared resid 304611.7 S.E. of regression 80.53266

and the 95% confidence interval for the slope [o is (7.645, 13.257).

Chapter six model specification

11



6.5 DModel Selection: Introduction to gretl Functions

Choosing an appropriate model is part art and part science. Omitting relevant variables that are
correlated with regressors causes least squares to be biased and inconsistent. Including irrelevant
variables reduces the precision of least squares. So, from a purely technical point, it is important
to estimate a model that has all of the necessary relevant variables and none that are irrelevant.
It is also important to use a suitable functional form. There is no set of mechanical rules that one
can follow to ensure that the model is correctly specified, but there are a few things vou can do to
increase your chances of having a snitable model to use for decision-making.

Here are a few rules of thumb:

1. Use whatever economic theory you have to select a functional form. For instance, if you
are estimating a short-run production function then economic theory suggests that marginal
returns to factors of production diminish. That means you should choose a functional form
that permits this (e.g., log-log).

2. If the estimated coefficients have the wrong signs or unreasonable magnitudes, then you
probably want to reevaluate either the functional form or whether relevant variables are
omitted.

3. You can perform joint hypothesis tests to detect the inclusion of irrelevant sets of variables.
Testing is not fool-proof since there is always positive probability that type 1 or type 2 error
is being committed.

4. You can use model selection rules to find sets of regressors that are ‘optimal’ in terms of an
estimated bias/precision trade-off.

5. Use a RESET test to detect possible misspecification of functional form.

In this section, I will give you some gretl commands to help with the last two: model selection
and RESET.



In this section we consider three model selection rules: B2, AIC, and SC. I'm not necessarily
recommending that these be used, since there are plenty of statistical problems caused by using
the sample to both specify, estimate, and then test hypotheses in a model, but sometimes you have
little other choice. Lag selection diseussed later in this book is a reasonable application for these.

6.5.1 Adjusted R?

The adjusted B2 was introduced in chapter 5. The usual R? is ‘adjusted’ to impose a small
penalty when a variable is added to the model. Adding a variable with any correlation to y always
reduces SSE and increases the size of the usnal B2, With the adjusted version, the improvement
in fit may be outweighed by the penalty and it could become smaller as variables are added. The
formula is: SSE/(N — K)

s —

k=1 m (6.8)
This sometimes referred to as “R-bar squared,” (i.e., B? ) although in gretl it is called *adjusted
R-squared.” The higgest drawback of using R? as a model selection rule is that the penalty it
imposes for adding regressors is too small on average. It tends to lead to models that contain
irrelevant variables. There are other model selection rules that impose larger penalties for adding
regressors and two of these are considered below.

6.5.2 Information Criteria

The two model selection rules considered here are the Akaike Information Criterion (AIC) and
the Schwarz Criterion (SC'). The SC is sometimes called the Bayesian Information Criterion ( BIC).
Both are computed by default in gretl and included in the standard regression output. The values
that gretl reports are based on maximizing a log-likelihood function (normal errors). There are
other variants of these that have been suggested for use in linear regression and these are presented
in the equations below:

AIC = In(SSE/N) + 2K /N (6.9)
BIC = SC=n(SSE/N) + K In(N)/N (6.10)

The rule is, compute AIC or SC for each model under consideration and choose the model that
minimizes the desired criterion. The models should be evaluated using the same number of obser-
vations, i.e., for the same value of N. You can convert the ones gretl reports to the ones in (6.9)
using a simple transformation; add (1 + In(27)) and then multiply everything by N. Since sample
size should be held constant when using model selection rules, yvou can see that the two different
computations will lead to exactly the same model choice.

Since the functions have to be evaluated for each model estimated, it is worth writing a function
in gretl that can be reused. The use of funetions to perform repetitive computations makes
programs shorter and reduced errors (unless your function is wrong, in which case every computation
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is incorrect!) In the next section, I will introduee you to gretl functions and offer one that will
compute the three model selection rules discussed above.

6.5.3 A gret]l Function to Produce Model Selection Rules

Gretl offers a mechanism for defining functions, which may be called via the command line,
in the context of a script, or (if packaged appropriately via the programs graphical interface. The
syntax for defining a function looks like this:

function return-type function-name (parameters)
function body
end function

The opening line of a function definition contains these elements, in strict order:

1. The keyword function.

2. return-type, which states the type of value returned by the function, if any. This must be
one of void (if the function does not return anything), scalar, series, matrix, list or string.

3. function-name, the unique identifier for the function. Names must start with a letter. They
have a maximum length of 31 characters; if you type a longer name it will be truncated.
Function names cannot contain spaces. You will get an error if you try to define a function
having the same name as an existing gretl command. Also, be careful not to give any of your
variables (scalars, matrices, ete.) the same name as one of your functions.

4. The functionss parameters, in the form of a comma-separated list enclosed in parentheses.
This may be run into the function name, or separated by white space as shown.

The model selection function is designed to do two things. First, we want it to print values of
the model selection rules for B2, AIC and SC. While we are at it we should also print how many
regressors the model has (and their names) and the sample size. The second thing we want is to be
able to send the computed statistics to a matrix. This will allow us to collect results from several
candidates into a single table.

The basic structure of the model selection function is

function matrix modelsel (series y, list xzvars)
[some computations]
[print results]
[return resultsl

end function
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As required, it starts with the keyword function. The next word, matrizx, tells the function that a
matrix will be returned as output. The next word is modelsel, which is the name that we are giving
to our function. The modelsel function has two arguments that will be used as inputs. The first is
a data series that we will refer to inside the body of the function as y. The second is a 1ist that
will be referred to as xvars. The inputs are separated by a comma and there are spaces between
the list of inputs. Essentially what we are going to do is feed the function a dependent variable
and a list of the independent variables as inputs. Inside the function a regression is estimated,
the criteria are computed based on it, the statistics are printed to the screen, and collected into
a matrix that will be returned. The resulting matrix is then available for further manipulation
outside of the function.

1+ function matrix modelsel (series y, list xvars)
2 ols y xvars -—quiet

3 scalar sse = $ess

fl scalar N = $nobs

5 scalar K = nelem(xvars)

[ scalar aic = ln(sse/N)+2=K/N

¥ scalar bic = In(sse/N)+K=N/N

& scalar rbar2 = 1-((1-3rsq)*(N-1)/3df)

9 matrix A = { K, N, aic, bic, rbar2 }

10 printf "\nRegressors: %s\n",varname(xvars)
11 printf "K = %d, N = %d, AIC = %.4f, SC = %.4f, and\
12 Adjusted R2 = ¥.4f\n", K, N, aic, bic, rbar2

13 return A

11 end function

In line 2 the function inputs y and the list xvars are used to estimate a linear model by least
squares. The --quiet option is used to suppress the least squares output. In lines 3-5 the sum
of squared errors, SSE, the number of observations, IV, and the mumber of regressors, K, are put
into scalars. In lines 6-8 the three criteria are computed. Line 9 puts various scalars into a matrix
called A. Lines 10 and 11 sends the names of the regressors to the screen. Line 11 sends formatted
output to the screen. Line 12 sends the matrix A as a return from the function. The last line closes
the funection.?

At this point, the function can be highlighted and run.

To use the function create a 1ist that will include the desired independent variables (called x
in this case). Then to use the function you will create a matrix called a that will include the output

from modelsel.

1 list x = const he we xtra_xb ztra xz6
a2 matrix a = modelsel(faminc,x)

2To get the gretl value of AIC: scalar aic_g = (1+1n(2+%pi)+aic)*N



The output is:

Regressors: const,he,we,kl6,xtra_xb,xtra_x6
K =6, N=428, AIC = 21.2181, SC = 27.1911, and Adjusted R2 = 0.1681

You can see that each of the repressor names is printed out on the first line of output. This is

followed by the values of K, N, AIC, SC, and R2.
6.5.4 RESET

The RESET test is used to assess the adequacy of vour functional form. The null hypothesis is
that your functional form is adequate. The alternative is that it is not. The test involves running
a couple of regressions and computing an F-statistic.

Consider the model
Yi = B1+ Pamis + Baria + & (6.11)
and the hypothesis
Hy:  Elylzo, x| = 1 + Porio + Pazia
Hy: not Hp

Rejection of Hy implies that the functional form is not supported by the data. To test this, first
estimate (6.11) using least squares and save the predicted values, 4;. Then square and cube § and
add them back to the model as shown below:

vi = Bi+Baxia + Pazig + U7 + e
vi = P+ B+ fazia +mi7 + el +e
The null hypotheses to test (against alternative, ‘not Hy’) are:

Hp : =0
Hy: m=mp=0

Estimate the auxiliary models using least squares and test the significance of the parameters of 4
and/or i*. This is accomplished through the following script. Note, the reset command issued
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after the first regression computes the test associated with Hy : v = 72 = 0. It is included here so
that you ean compare the ‘canned’ result with the one you compute using the two step procedure

suggested above. The two results should match.

1 ols faminc x3 --guiet
2 reset —--quiet
3 reset --quiet --squares-only

The results of the RESET for the family income equation is

RESET test for specification (squares and cubes)
Test statistic: F = 3.122681,
with p-value = P(F(2,422) > 3.12258) = 0.0451

RESET test for specification (squares only)
Test statistic: F = 5.690471,
with p-value = P(F(1,423) > 5.69047) = 0.0175

The adequacy of the functional form is rejected at the 5% level for both tests.

drawing board!

It’s back to the
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B gt model table [F=REER =)
= RN L SR
QLS estimates
Dependent variable: Ifaminc
(1) (2} 13y 14} (5] (£
conat —5248 -5534 -75589 —T7T55 —-5534 Z2.815e4+0q**
(—0.2662) (-0.4828) [-0.8732} (=0.622T) (-0.4828) (3.068)
he == Ll 3132w q340%% S2iRss 3132+ SAGG#
(2.825) (3.z00) [2.672} [4.031) {3.500) (7.830)
we Sh&E** 45234 SEEgww 4TTIAA 45254+
(2. 468) 2.241) [2.576} (4.502) 14,247
HTra_xt B0F.T BEH.E
(0. 2573) 10,3382}
rtra_=b 1101 -10&67
(0. 5509) -0 .5385}
kle —1.420409%* —1.431la:0g"=
[-2.B15} (—Z.560)
n 428 423 428 4718 428 428
nd) . RAWD O.1544 0.1574 0.1681 0.1T71la 0.157< 0.1237
1nL —5146 -E14€ -51¢2 —5142 —51486 —5188
t-statistica in purcnthc:lc:l
* lndicates gignificance at cthe 10 percent level
== 1ndicatels significancs at the 5 percent level

Figure 6.13: Save each model as an icon. Open the session window and drag each model to the
maodel table icon. Click on the model table icon to reveal this output.

1. Use whatever economic theory you have to select a functional form. For instance, if you
are estimating a short-run production function then economic theory suggests that marginal
returns to factors of production diminish. That means you should choose a functional form
that permits this (e.g., log-log).

2. If the estimated coefficients have the wrong signs or unreasonable magnitudes, then vou
probably want to reevaluate either the functional form or whether relevant wariables are
omitted.

3. You can perform joint hypothesis tests to detect the inclusion of irrelevant sets of variables.
Testing is not fool-proof since there is always positive probability that type 1 or type 2 error
is being committed.

4. You can nuse model selection rules to find sets of regressors that are ‘optimal’ in terms of an
estimated bias/precision trade-off.

5. Use a RESET test to detect possible misspecification of functional form.

In this section, I will give yvou some gretl commands to help with the last two: model selection
and RESET.
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| have taken the following descriptions of some of the standard diagnostics tests from: “Introduction to
Probability and Statistics Using R”, G. Jay Kerns, available at http://cran.r-
project.org/web/packages/IPSUR/vignettes/IPSUR.pdf

11.4.3 Independence Assumption

One of the strongest of the regression assumptions is the one regarding independence. Departures
from the independence assumption are often exhibited by correlation (or autocorrelation, literally,
self-correlation) present in the residuals. There can be positive or negative correlation.

Positive correlation is displayed by positive residuals followed by positive residuals, and neg-
ative residuals followed by negative residuals. Looking from left to right, this is exhibited by a
cyclical feature in the residual plots, with long sequences of positive residuals being followed by
long sequences of negative ones.

On the other hand, negative correlation implies positive residuals followed by negative residu-
als, which are then followed by positive residuals, efc. Consequently, negatively correlated resid-
uals are often associated with an alternating pattern in the residual plots. We examine the residual
plot in Figure 11.4.3. There is no obvious cyclical wave pattern or structure to the residual plot.

Testing the Independence Assumption

We may statistically test whether there is evidence of autocorrelation in the residuals with the
Durbin-Watson test. The test is based on the statistic

YL E; - E;. )

n 2
z_;:] Ej

D= (11.4.6)

11.5 Other Diagnostic Tools

There are two types of observations with which we must be especially careful:

Influential observations are those that have a substantial effect on our estimates, predictions, or
inferences. A small change in an influential observation is followed by a large change in the

parameter estimates or inferences.

Outlying observations are those that fall fall far from the rest of the data. They may be indicating
a lack of fit for our regression model, or they may just be a mistake or typographical error
that should be corrected. Regardless, special attention should be given to these observations.
An outlying observation may or may not be influential.

We will discuss outliers first because the notation builds sequentially in that order.

11.5.1 Outliers

There are three ways that an observation (x;. v;) may be an outlier: it can have an x; value which
falls far from the other x values, it can have a y; value which falls far from the other v values, or it
can have both its x; and y; values falling far from the other x and y values.


http://cran.r-project.org/web/packages/IPSUR/vignettes/IPSUR.pdf
http://cran.r-project.org/web/packages/IPSUR/vignettes/IPSUR.pdf

Leverage

Leverage statistics are designed to identify observations which have x values that are far away from
the rest of the data. In the simple linear regression model the leverage of x; is denoted by hy; and
defined by
1 (x; —x)°

hi=—+ ———=3-
no Yi_glx -3¢
The formula has a nice interpretation in the SLR model: if the distance from x; to x is large relative
to the other x's then f; will be close to 1.

Leverages have nice mathematical properties; for example, they satisfy

i=1,2,....n (11.5.1)

0=h;i=1, (11.5.2)
and thelr sum 1s

(11.5.3)

p Sl =X (11.5.4)

(11.5.5)

A rule of thumb 1s to consider leverage values to be large if they are more than double their average
size (which is 2 /n according to Equation 11.5.5). So leverages larger than 4/ n are suspect. Another
rule of thumb is to say that values bigger than (.5 indicate high leverage, while values between 0.3
and (0.5 indicate moderate leverage.
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