Multiple Regression Analysis

Econometrics V lecture 3

- Basic principle the same.
- OLS still minimises the sum of the squared residuals.
- Now there is more than 1 explanatory (right hand side) variable.
- Slide on next page illustrates idea when we have 2 explanatory variables - its 3D space and we fit a plane
- Econometrics V lecture 3

- Start with a simple example:
- What might y and x1 and x2 be?
- y could be consumption
- x_{2} could be income
- x_{3} could be the interest rate
- Interpretation of parameters?
- Very similar to simple regression

$$
\beta_{2}=\frac{\partial y}{\partial x_{2}} \quad \beta_{3}=\frac{\partial y}{\partial x_{3}}
$$

- What if we were using logarithms???
- Assumptions?
- Essentially those of simple regression - but now we have to add to the assumption that x is not random as there are more than 1 x variables (explanatory variables).
- We now have to assume that the x variables are not perfectly linearly related to each other ie $x_{2} \neq 4 x_{3}$ - this is the assumption of no perfect multicollinearity.
- SR1

$$
E\left[y_{t}\right]=\beta_{1}+\beta_{2} x_{t 2}+\beta_{3} x_{t 3}
$$

- SR2. $E(e)=0 \Leftrightarrow E(y)=\beta_{1}+\beta_{2} x$
- SR3. $\operatorname{var}(e)=\sigma^{2}=\operatorname{var}(y)$
- SR4. $\operatorname{cov}\left(e_{i}, e_{j}\right)=\operatorname{cov}\left(y_{i}, y_{j}\right)=0$
- SR5. The variable x is not random and are not exact linear functions of each other.
- SR6. (optional) The values of e are normally distributed about their mean

$$
e \sim N\left(0, \sigma^{2}\right)
$$

- Multicollinearity
- M is important - think how it might arise.
- If we do have perfect M ols will fail - try it make up some data and make one of the x's a linear function of the other - then try running it.
- The software will fail - - "singular matrix" or some such nonsense?!
- We will look at the effects of M later in the lecture - but the logic is simple - suppose you are trying to explain the weight of individuals - you use two explanatory variables - height and inside leg measurement.
- OLS will have problems sorting out the effects of the 2 exp. Variables because they are likely to be highly collinear.

- Estimation

- You will not have to do any calculations "by hand" for the multiple regression model - computers only and in the exam we will focus on interpretation and use of results - not parameter calculation.
- Method the same:

$$
E\left[y_{t}\right]=\beta_{1}+\beta_{2} x_{t 2}+\beta_{3} x_{t 3}
$$

$$
\begin{aligned}
& \operatorname{Min}^{m} Q=\sum\left(y-\hat{\beta}_{1}-\hat{\beta}_{2}-\hat{\beta}_{3}\right)^{2} \\
& \text { w.r.t. } \hat{\beta}_{1,} \hat{\beta}_{2}, \hat{\beta}_{3}
\end{aligned}
$$

- So as before - differentiate w.r.t. to each parameter, set equal to zero - we will get 3 equations in 3 unknowns, the normal equations which can then be solved.
- So given data on y, x_{1} and x_{2} we can use the method of ols to obtain estimates of the parameters β_{1}, β_{2} and β_{3} which we will call

$$
\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}
$$

- OK just like simple regression
- We have estimators of the parameters
- Once again the estimators are random variables.
- Again to make it useful we need to know their means and variances
- Once again it turns out expected values equal population values - so we just need formulae for the variances.
- Once again the first step is the error variance
- And once again

$$
\hat{\sigma}^{2}=\frac{\sum \hat{e}^{2}}{T-k}
$$

- So the estimator of the error variance uses the same formulae as for simple regression but now k is not always equal to 2
- k is the number of estimated parameters in the regression model so varies according to how many explanatory variables there are.

Econometrícs V lecture 3

- Now, and again without proof, we can work out expressions for the variances and covariances of the estimated parameters.
- These formulae involve σ^{2} and we can use our estimate of this.
- For our example model

$$
E\left[y_{t}\right]=\beta_{1}+\beta_{2} x_{t 2}+\beta_{3} x_{t 3}
$$

- We can write these down. For example:

$$
\begin{aligned}
& \operatorname{vâr}\left(\hat{\beta}_{2}\right)=\frac{\sigma^{2}}{\sum_{1}^{T}\left(x_{2}-\bar{x}_{2}\right)^{2}\left(1-r_{23}^{2}\right)} \\
& r_{12}=\frac{\sum\left(x_{2}-\bar{x}_{2}\right)\left(x_{3}-\bar{x}_{3}\right)}{\sqrt{\sum\left(x_{2}-\bar{x}_{2}\right)^{2} \sum\left(x_{3}-\bar{x}_{3}\right)^{2}}}
\end{aligned}
$$

which is the correlation coefficient between x_{2} and x_{3}

- I don't expect you to remember that - but there are some things about it I do expect you to remember.
- Smaller variance is important. The smaller the parameter variance is the more likely the estimate is going to be close to its true value.
- If the variance is large (and since the test of significance of the coefficient is coefficient divided by se) then the estimated coefficient is not likely to be statistically significant.
- So its good to know what factors affect the size of the variance of the estimated coefficients.
- Lets list them - you keep looking back at the slide with the formulae

$$
\operatorname{vâr}\left(\hat{\beta}_{2}\right)=\frac{\sigma^{2}}{\sum_{1}^{T}\left(x_{2}-\bar{x}_{2}\right)^{2}\left(1-r_{23}^{2}\right)}
$$

- The larger σ^{2} the larger the variance of the least squares estimators. This is to be expected since σ^{2} measures the overall uncertainty in the model specification. If σ^{2} is large, then data values may be widely spread about the regression function

$$
E\left[y_{t}\right]=\beta_{1}+\beta_{2} x_{t 2}+\beta_{3} x_{t 3}
$$

- and there is less information in the data about the parameter values.

Econometrics V lecture 3

- The larger sample size T the smaller the variances. The sum in the denominator is

$$
\sum_{t=1}^{T}\left(x_{t 2}-\bar{x}_{2}\right)^{2}
$$

- The larger is the sample size T the larger is this sum and thus the smaller is the variance.
- More observations yield more precise parameter estimation.

Econometrics V lecture 3

- In order to estimate β_{2} precisely we would like there to be a large amount of variation in $x_{t 2}, \sum_{k=1}^{x}\left(x_{2}-\bar{x}_{2}\right)^{2}$. The intuition here is that it is easier to measure β_{2}, the change in y we expect given a change in x_{2}, the more sample variation (change) in the values of x_{2} that we observe.

Econometrics V lecture 3

- In the denominator of $\operatorname{var}\left(b_{2}\right)$ is the term where r_{23} is the correlation between the sample values of $x_{t 2}$ and $x_{t 3}$. Recall that the correlation coefficient measures the linear association between two variables. If the values of x_{12} and $x_{t 3}$ are correlated then

$$
1-r_{23}^{2}
$$ is a fraction that is less than 1.

Econometrics V lecture 3

- The larger the correlation between $x_{t 2}$ and $x_{t 3}$ the larger is the variance of the least squares estimator b_{2}. The reason for this fact is that variation in $x_{t 2}$ adds most to the precision of estimation when it is not connected to variation in the other explanatory variables.
- If the two variables are linearly related the correlation coefficient $=1$ and ols fails. This is perfect multicollinearity

Econometrics V lecture 3

- So just as with simple regression the variances and covariance's between the estd parameters will be of interest and we could write formulae down for them.
- We will not be writing them down but the computer will be calculating them.
- Once again we can get the computer to print the variance/covariance matrix for the estimated coefficients.

Edith Cowan University

$y=\beta 0+\beta_{1}+\beta_{2}+\beta_{3}+\beta_{4}+e$

	b_{0}	b_{1}	b_{2}	b_{3}
b_{0}	$\operatorname{var}(\mathrm{bo})$		b_{4}	
b_{1}				
b_{2}				
b_{3}				
b_{4}				

Econometrics V lecture 3

- Now the next bits are easy.
- If the error term is assumed normally distributed, then just as in the simple regression case:

$$
t=\frac{\hat{\beta}_{k}-\beta_{k}}{\operatorname{se}\left(\hat{\beta}_{k}\right)} \sim t_{T-k}
$$

and
$\hat{\beta}_{k} \pm t_{c} \cdot s e\left(\hat{\beta}_{k}\right)$
gives us a confidence interval

Econometrics V lecture 3

- R^{2} and $R(b a r)^{2}$
- How is it calculated
- Why is that not much help in the multiple regression case.
- If we have $\mathrm{T}-1$ variables $\mathrm{R}^{2}=1$

$$
\bar{R}^{2}=1-\frac{\operatorname{SSE} /(T-k)}{\operatorname{SST}(T-1)}
$$

- Now no longer \% total variation explained
- Think of it as fit
- Uses - and abuses - don't use to pick variables for inclusion

Econometrics V lecture 3

- We have used our t test to test simple hypothesis about single coefficients.
- It can be used for slightly more complex hypothesis.
- Example
- $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u$
- Ho : = 4
- Ha: $=4$
- Is straight forward

Econometrics V lecture 3

- But what about
- Ho : $\beta_{1}=2 \beta_{2}$
- This can be done in the usual way but will need some manipulation
- How about
- Ho : $\beta_{1}+\beta_{2}=4$

Econometrics V lecture 3

- What about
- Ho: $\beta_{2}=\beta_{3}=0$
- Can we do this using a t test - how about 2 t tests?
- If we cannot reject Ho $\beta_{2}=0$ and we cannot reject Ho $\beta_{3}=0$ then we cannot reject the above?
- Not necessarily - the estimators of β_{2} and β_{3} are correlated - a test of joint hypothesis such as the above should take this into account
- Think of example of equation with multicollinearity??????
- Effects of mutlicollinearity - signs of multicollinearity....

Econometrics V lecture 3

- So rule of thumb
- If there is a single = sign it can be done as a t test (you need the VCV matrix - if this is not there take that as a hint that you have to do it a different way)
- If there is more than 1 equals sign (multiple restrictions) it cannot be done as a t test we will look in a future slide at the F test which is how we will do it.
- Multiple Regression Analysis
- $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots \beta_{k} x_{k}+u$

- 3. Asymptotic Properties

- Under the Gauss-Markov assumptions OLS is BLUE, but in other cases it won't always be possible to find unbiased estimators
- In those cases, we may settle for estimators that are consistent, meaning as $\mathrm{n} \rightarrow \infty$, the distribution of the estimator collapses to the parameter value

- Under the Gauss-Markov assumptions, the OLS estimator is consistent (and unbiased)
- Consistency can be proved for the simple regression case in a manner similar to the proof of unbiasedness
- Will need to take probability limit (plim) to establish consistency

$$
\begin{aligned}
& \hat{\beta}_{1}=\left(\sum\left(x_{i 1}-\bar{x}_{1}\right) y_{i}\right) /\left(\sum\left(x_{i 1}-\bar{x}_{1}\right)^{2}\right) \\
& =\beta_{1}+\left(n^{-1} \sum\left(x_{i 1}-\bar{x}_{1}\right) u_{i}\right) /\left(n^{-1} \sum\left(x_{i 1}-\bar{x}_{1}\right)^{2}\right) \\
& \operatorname{plim} \hat{\beta}_{1}=\beta_{1}+\operatorname{Cov}\left(x_{1}, u\right) / \operatorname{Var}\left(x_{1}\right)=\beta_{1} \\
& \text { because } \operatorname{Cov}\left(x_{1}, u\right)=0
\end{aligned}
$$

- For unbiasedness, we assumed a zero conditional mean $-\mathrm{E}\left(u \mid x_{1}, x_{2}, \ldots, x_{k}\right)=0$
- For consistency, we can have the weaker assumption of zero mean and zero correlation $-\mathrm{E}(u)=0$ and $\operatorname{Cov}\left(x_{j}, u\right)=0$, for j $=1,2, \ldots, k$
- Without this assumption, OLS will be biased and inconsistent!
- Just as we could derive the omitted variable bias earlier, now we want to think about the inconsistency, or asymptotic bias, in this case

$$
\begin{aligned}
& \text { True model : } y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+v \\
& \text { You think : } y=\beta_{0}+\beta_{1} x_{1}+u, \text { so that } \\
& u=\beta_{2} x_{2}+v \text { and, } \operatorname{plim} \widetilde{\beta}_{1}=\beta_{1}+\beta_{2} \delta \\
& \text { where } \delta=\operatorname{Cov}\left(x_{1}, x_{2}\right) / \operatorname{Var}\left(x_{1}\right)
\end{aligned}
$$

- So, thinking about the direction of the asymptotic bias is just like thinking about the direction of bias for an omitted variable
- Main difference is that asymptotic bias uses the population variance and covariance, while bias uses the sample counterparts
- Remember, inconsistency is a large sample problem - it doesn't go away as add data
- Recall that under the CLM assumptions, the sampling distributions are normal, so we could derive t and F distributions for testing
- This exact normality was due to assuming the population error distribution was normal This assumption of normal errors implied that the distribution of y, given the x 's, was normal as well

Econometrics V Iecture 3

- If there are n data points to estimate parameters of both models from, then one can calculate the F statistic, given by

$$
F=\frac{\left(\frac{R S S_{1}-R S S_{2}}{p 2-\bar{p} 1}\right)}{\frac{R S S_{2}}{n-p 2}}
$$

- where RSS is the residual sum of squares of model i.
- Easy to come up with examples for which this exact normality assumption will fail
- Any clearly skewed variable, like wages, arrests, savings, etc. can't be normal, since a normal distribution is symmetric
- Normality assumption not needed to conclude OLS is BLUE, only for inference

Econometrics V lecture 3

Central Limit Theorem

\star Based on the central limit theorem, we can show that OLS estimators are asymptotically normal Asymptotic Normality implies that $\mathrm{P}(\mathrm{Z}<\mathrm{z}) \rightarrow \Phi(\mathrm{z})$ as $\mathrm{n} \rightarrow \infty$, or $\mathrm{P}(\mathrm{Z}<\mathrm{z}) \approx \Phi(\mathrm{z})$

The central limit theorem states that the standardized average of any population with mean μ and variance σ^{2} is asymptotically $\sim \mathrm{N}(0,1)$, or

$$
Z=\frac{\bar{Y}-\mu_{Y}}{\sigma / \sqrt{n}} \stackrel{a}{\sim} N(0,1)
$$

Under the Gauss - Markov assumptions,

(i) $\sqrt{n}\left(\hat{\beta}_{j}-\beta_{j}\right) \stackrel{a}{\sim} \operatorname{Normal}\left(0, \sigma^{2} / a_{j}^{2}\right)$,
where $a_{j}^{2}=\operatorname{plim}\left(n^{-1} \sum \hat{r}_{i j}^{2}\right)$
(ii) $\hat{\sigma}^{2}$ is a consistent estimator of σ^{2}
(iii) $\left(\hat{\beta}_{j}-\beta_{j}\right) / \operatorname{se}\left(\hat{\beta}_{j}\right) \stackrel{a}{\sim} \operatorname{Normal}(0,1)$

Because the t distribution approaches the normal distribution for large df, we can also say that

$$
\left(\hat{\beta}_{j}-\beta_{j}\right) / \operatorname{se}\left(\hat{\beta}_{j}\right)^{a} \sim t_{n-k-1}
$$

Note that while we no longer need to assume normality with a large sample, we do still need homoskedasticity

Econometrics V lecture 3

Asymptotic Standard Errors

- If u is not normally distributed, we sometimes will refer to the standard error as an asymptotic standard error, since

$$
\begin{aligned}
& \operatorname{se}\left(\hat{\beta}_{j}\right)=\sqrt{\frac{\hat{\sigma}^{2}}{S S T_{j}\left(1-R_{j}^{2}\right)}}, \\
& \operatorname{se}\left(\hat{\beta}_{j}\right) \approx c_{j} / \sqrt{n}
\end{aligned}
$$

So, we can expect standard errors to shrink at a rate proportional to the inverse of $\sqrt{ } n$

- With large samples, by relying on asymptotic normality for inference, we can use more than t and F stats
- The Lagrange multiplier or LM statistic is an alternative for testing multiple exclusion restrictions
- Because the LM statistic uses an auxiliary regression it's sometimes called an $n R^{2}$ stat
- Suppose we have a standard model, $y=\beta_{0}+\beta_{1} x_{1}$ $+\beta_{2} x_{2}+\ldots \beta_{k} x_{k}+u$ and our null hypothesis is
- $\mathrm{H}_{0}: \beta_{k-q+1}=0, \ldots, \beta_{k}=0$
- First, we just run the restricted model
$y=\tilde{\beta}_{0}+\widetilde{\beta}_{1} x_{1}+\ldots+\tilde{\beta}_{k-q} x_{k-q}+\tilde{u}$
Now take the residuals, \tilde{u}, and regress
\tilde{u} on $x_{1}, x_{2}, \ldots, x_{k}$ (i.e. all the variables)
$L M=n R_{u}^{2}$, where R_{u}^{2} is from this reg
$L M \stackrel{a}{\sim} \chi_{q}^{2}$, so can choose a critical
value, c, from a χ_{q}^{2} distribution, or
just calculate a p-value for χ_{q}^{2}
- With a large sample, the result from an F test and from an $L M$ test should be similar
- Unlike the F test and t test for one exclusion, the $L M$ test and F test will not be identical

Econometrics V lecture 3

Multiple Regression Analysis

$$
\otimes y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots \beta_{k} x_{k}+u
$$

$\diamond 4$. Further Issues

- Estimators besides OLS will be consistent
- However, under the Gauss-Markov assumptions, the OLS estimators will have the smallest asymptotic variances
- We say that OLS is asymptotically efficient
- Important to remember our assumptions though, if not homoskedastic, not true

Redefining Variables

- Changing the scale of the y variable will lead to a corresponding change in the scale of the coefficients and standard errors, so no change in the significance or interpretation
- Changing the scale of one x variable will lead to a change in the scale of that coefficient and standard error, so no change in the significance or interpretation
- Occasional you'll see reference to a "standardized coefficient" or "beta coefficient" which has a specific meaning
- Idea is to replace y and each x variable with a standardized version - i.e. subtract mean and divide by standard deviation
- Coefficient reflects standard deviation of y for a one standard deviation change in x
- OLS can be used for relationships that are not strictly linear in x and y by using nonlinear functions of x and y-will still be linear in the parameters
- Can take the natural \log of x, y or both
- Can use quadratic forms of x
- Can use interactions of x variables
- If the model is $\ln (y)=\beta_{0}+\beta_{1} \ln (x)+u$
- β_{1} is the elasticity of y with respect to x
- If the model is $\ln (y)=\beta_{0}+\beta_{1} x+u$
- β_{1} is approximately the percentage change in y given a 1 unit change in x
- If the model is $y=\beta_{0}+\beta_{1} \ln (x)+u$
- β_{1} is approximately the change in y for a 100 percent change in x
- Log models are invariant to the scale of the variables since measuring percent changes They give a direct estimate of elasticity
- For models with $y>0$, the conditional distribution is often heteroskedastic or skewed, while $\ln (y)$ is much less so
- The distribution of $\ln (y)$ is more narrow, limiting the effect of outliers
- What types of variables are often used in log form?
- Dollar amounts that must be positive
- Very large variables, such as population
- What types of variables are often used in level form?
- Variables measured in years
- Variables that are a proportion or percent

Quadratic Models

- For a model of the form $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+u$ we can't interpret β_{1} alone as measuring the change in y with respect to x, we need to take into account β_{2} as well, since

$$
\Delta \hat{y} \approx\left(\hat{\beta}_{1}+2 \hat{\beta}_{2} x\right) \Delta x, \text { so }
$$

$\frac{\Delta \hat{y}}{\Delta x} \approx \hat{\beta}_{1}+2 \hat{\beta}_{2} x$

More on Quadratic Models

- Suppose that the coefficient on x is positive and the coefficient on x^{2} is negative
- Then y is increasing in x at first, but will eventually turn around and be decreasing in x

For $\hat{\beta}_{1}>0$ and $\hat{\beta}_{2}<0$ the turning point

will be at $x^{*}=\left|\hat{\beta}_{1} /\left(2 \hat{\beta}_{2}\right)\right|$

More on Quadratic Models

- Suppose that the coefficient on x is negative and the coefficient on x^{2} is positive
- Then y is decreasing in x at first, but will eventually turn around and be increasing in x

For $\hat{\beta}_{1}<0$ and $\hat{\beta}_{2}>0$ the turning point
will be at $x^{*}=\mid \hat{\beta}_{1} /\left(2 \hat{\beta}_{2}\right)$, which is
the same as when $\hat{\beta}_{1}>0$ and $\hat{\beta}_{2}<0$

Interaction Terms

For a model of the form $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+$ $\beta_{3} x_{1} x_{2}+u$ we can't interpret β_{1} alone as measuring the change in y with respect to x_{1}, we need to take into account β_{3} as well, since
$\frac{\Delta y}{\Delta x_{1}}=\beta_{1}+\beta_{3} x_{2}$, so to summarize
the effect of x_{1} on y we typically evaluate the above at \bar{x}_{2}

- Recall that the R^{2} will always increase as more variables are added to the model
- The adjusted R^{2} takes into account the number of variables in a model, and may decrease

$$
\begin{aligned}
& \bar{R}^{2} \equiv 1-\frac{[S S R /(n-k-1)]}{[S S T /(n-1)]} \\
& =1-\frac{\hat{\sigma}^{2}}{[S S T /(n-1)]}
\end{aligned}
$$

- It's easy to see that the adjusted R^{2} is just (1 $\left.-R^{2}\right)(n-1) /(n-k-1)$, but most packages will give you both R^{2} and adj- R^{2}
- You can compare the fit of 2 models (with the same y) by comparing the adj- R^{2}
- You cannot use the adj- R^{2} to compare models with different y 's (e.g. y vs. $\ln (y))$

Goodness of Fit

- Important not to fixate too much on adj- R^{2} and lose sight of theory and common sense
- If economic theory clearly predicts a variable belongs, generally leave it in
- Don't want to include a variable that prohibits a sensible interpretation of the variable of interest - remember ceteris paribus interpretation of multiple regression

Standard Errors for Predictions

- Suppose we want to use our estimates to obtain a specific prediction?
- First, suppose that we want an estimate of $\mathrm{E}\left(y \mid x_{1}=c_{1}, \ldots x_{k}=c_{k}\right)=\theta_{0}=\beta_{0}+\beta_{1} c_{1}+\ldots+$ $\beta_{k} c_{k}$
- This is easy to obtain by substituting the x 's in our estimated model with c's, but what about a standard error?
- Really just a test of a linear combination
- Can rewrite as $\beta_{0}=\theta_{0}-\beta_{1} c_{1}-\ldots-\beta_{k} c_{k}$
- Substitute in to obtain $y=\theta_{0}+\beta_{1}\left(x_{1}-C_{1}\right)+$ $\ldots+\beta_{k}\left(x_{k}-c_{k}\right)+u$
- So, if you regress y_{i} on $\left(x_{i j}-c_{i j}\right)$ the intercept will give the predicted value and its standard error
- Note that the standard error will be smallest when the c 's equal the means of the x 's

Predictions (cont)

- This standard error for the expected value is not the same as a standard error for an outcome on y
- We need to also take into account the variance in the unobserved error. Let the prediction error be

$$
\begin{aligned}
& \hat{e}^{0}=y^{0}-\hat{y}^{0}=\left(\beta_{0}+\beta_{1} x_{1}^{0}+\ldots+\beta_{k} x_{k}^{0}\right)+u^{0}-\hat{y}_{0} \\
& E\left(\hat{e}^{0}\right)=0 \text { and } \operatorname{Var}\left(\hat{e}^{0}\right)=\operatorname{Var}\left(\hat{y}^{0}\right)+\operatorname{Var}\left(u^{0}\right)= \\
& \operatorname{Var}\left(\hat{y}^{0}\right)+\sigma^{2}, \operatorname{sose}\left(\hat{e}^{0}\right)=\left\{\left[\operatorname{se}\left(\hat{y}^{0}\right)\right]^{2}+\hat{\sigma}^{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{e}^{0} / \operatorname{se}\left(\hat{e}^{0}\right) \sim t_{n-k-1} \text {, so given that } \hat{e}^{0}=y^{0}-\hat{y}^{0} \\
& \text { we have a } 95 \% \text { prediction interval for } y^{0} \\
& \hat{y}^{0} \pm t_{.025} \bullet \operatorname{se}\left(\hat{e}^{0}\right)
\end{aligned}
$$

- Usually the estimate of s^{2} is much larger than the variance of the prediction, thus
- This prediction interval will be a lot wider than the simple confidence interval for the prediction
- Information can be obtained from looking at the residuals (i.e. predicted vs. observed)
- Example: Regress price of cars on characteristics - big negative residuals indicate a good deal
- Example: Regress average earnings for students from a school on student characteristics - big positive residuals indicate greatest value-added underestimate the expected value of y
- Instead need to scale this up by an estimate of the expected value of $\exp (u)$

$$
E(\exp (u))=\exp (\sigma / 2) \text { if } u \sim N\left(0, \sigma^{2}\right)
$$

In this case can predict y as follows

$$
\hat{y}=\exp \left(\hat{\sigma}^{2} / 2\right) \exp (\ln y)
$$

- If u is not normal, $\mathrm{E}(\exp (u))$ must be estimated using an auxiliary regression
- Create the exponentiation of the predicted In (y), and regress y on it with no intercept
- The coefficient on this variable is the estimate of $\mathrm{E}(\exp (u))$ that can be used to scale up the exponentiation of the predicted $\ln (y)$ to obtain the predicted y
- A by-product of the previous procedure is a method to compare a model in logs with one in levels.
- Take the fitted values from the auxiliary regression, and find the sample correlation between this and y
- Compare the R^{2} from the levels regression with this correlation squared

