
Multiple Regression Analysis 

 

• Basic principle the same. 

• OLS still minimises the sum of the squared residuals. 

• Now there is more than 1 explanatory (right hand side) 
variable. 

• Slide on next page illustrates idea when we have 2 
explanatory variables – its 3D space and we fit a plane 
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Econometrics V lecture 3 

 

• Start with a simple example: 
•   

• What might y and x1 and x2 be? 

• y could be consumption 

• x2 could be income 

• x3 could be the interest rate 

• Interpretation of parameters? 

• Very similar to simple regression 

 

 

 

 

 

 

• What if we were using logarithms??? 
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Econometrics V lecture 3 

 

• Assumptions? 

• Essentially those of simple regression – but 

now we have to add to the assumption that x 

is not random as there are more than 1 x 

variables (explanatory variables). 

• We now have to assume that the x variables 

are not perfectly linearly related to each 

other ie x2  4x3 – this is the assumption of 

no perfect multicollinearity. 
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• SR1    

 

• SR2.           

 

• SR3.    

 

• SR4.   

 

• SR5.  The variable x is not random and are not exact linear functions of each 

other. 

 

• SR6.  (optional)  The values of e are normally distributed about their mean 

 

 
2~ (0, )e N 
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• Multicollinearity 

• M is important – think how it might arise. 

• If we do have perfect M ols will fail – try it – 

make up some data and make one of the x’s 

a linear function of the other – then try 

running it. 

• The software will fail – - “singular matrix” or 

some such nonsense?! 
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• We will look at the effects of M later in the 

lecture – but the logic is simple – suppose 

you are trying to explain the weight of 

individuals – you use two explanatory 

variables – height and inside leg 

measurement. 

• OLS will have problems sorting out the 

effects of the 2 exp. Variables because they 

are likely to be highly collinear. 
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• Estimation 
• You will not have to do any calculations “by hand” for the multiple regression 

model – computers only and in the exam we will focus on interpretation and use 

of results – not parameter calculation. 

• Method the same: 
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• So as before – differentiate w.r.t. to each 

parameter, set equal to zero – we will get 3 

equations in 3 unknowns, the normal equations - 

which can then be solved. 

• So given data on y, x1 and x2 we can use the 

method of ols to obtain estimates of the 

parameters 1, 2 and 3 which we will call 
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• OK just like simple regression 

• We have estimators of the parameters 

• Once again the estimators are random 
variables. 

• Again to make it useful we need to know 
their means and variances 

• Once again it turns out expected values 
equal population values – so we just need 
formulae for the variances. 

• Once again the first step is the error variance  
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• And once again 

 

 

• So the estimator of the error variance uses 

the same formulae as for simple regression 

but now k is not always equal to 2 

• k is the number of estimated parameters in 

the regression model so varies according to 

how many explanatory variables there are. 
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Econometrics V lecture 3 

 
• Now, and again without proof, we can work out expressions for the variances 

and covariances of the estimated parameters. 

• These formulae involve 2 and we can use our estimate of this. 

• For our example model 

 

 

 

• We can write these down. For example: 
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• I don’t expect you to remember that – but 

there are some things about it I do expect 

you to remember. 

• Smaller variance is important. The smaller 

the parameter variance is the more likely the 

estimate is going to be close to its true value. 

• If the variance is large (and since the test of 

significance of the coefficient is coefficient 

divided by se) then the estimated coefficient 

is not likely to be statistically significant. 
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• So its good to know what factors affect the 

size of the variance of the estimated 

coefficients. 

• Lets list them – you keep looking back at the 

slide with the formulae 
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• The larger 2  the larger the variance of the least squares 

estimators.  This is to be expected since 2 measures the 

overall uncertainty in the model specification.  If 2 is large, 

then data values may be widely spread about the 

regression function  

 

 

 
• and there is less information in the data about the 

parameter values.  
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• The larger sample size T the smaller the 

variances. The sum in the denominator is 

 

 

• The larger is the sample size T the larger is 

this sum and thus the smaller is the 

variance. 

• More observations yield more precise 

parameter estimation. 
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• In order to estimate 2 precisely we 

would like there to be a large amount of 

variation in xt2,              .  The intuition 

here is that it is easier to measure 2, 

the change in y we expect given a 

change in x2, the more sample variation 

(change) in the values of x2  that we 

observe.  
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• In the denominator of var(b2) is the term  

where r23 is the correlation between the 

sample values of xt2 and xt3.  Recall that the 

correlation coefficient measures the linear 

association between two variables.  If the 

values of xt2 and xt3 are correlated then  

 

•        is a fraction that is less than 1.  

 

2
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• The larger the correlation between xt2 and xt3 

the larger is the variance of the least squares 

estimator b2.  The reason for this fact is that 

variation in xt2 adds most to the precision of 

estimation when it is not connected to 

variation in the other explanatory variables.  

• If the two variables are linearly related the 

correlation coefficient = 1 and ols fails. This 

is perfect multicollinearity 
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• So just as with simple regression the 

variances and covariance's between the estd 

parameters will be of interest and we could 

write formulae down for them. 

• We will not be writing them down but the 

computer will be calculating them. 

• Once again we can get the computer to print 

the variance/covariance matrix for the 

estimated coefficients. 
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 y=0+1+2+3+4+e 

 

bo b1 b2 b3 b4 

bo var(bo) 

b1 

b2 

b3 

b4 cov(b4,b1) 
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• Now the next bits are easy. 

• If the error term is assumed normally distributed, then just 

as in the simple regression case: 
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• R2 and R(bar)2 

• How is it calculated 

• Why is that not much help in the multiple regression case. 

• If we have T-1 variables R2 = 1 

 

 

 

• Now no longer % total variation explained 

• Think of it as fit 

• Uses – and abuses – don't use to pick variables for 

inclusion 
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• We have used our t test to test simple 
hypothesis about single coefficients. 

• It can be used for slightly more complex 
hypothesis. 

• Example 

•  y = 0 + 1x1 + 2x2 + u 

• Ho :   = 4 

• Ha :    4 

• Is straight forward 
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• But what about 

• Ho : 1 = 22 

 

• This can be done in the usual way but will 

need some manipulation 

 

• How about 

• Ho : 1 + 2 = 4  
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• What about  

• Ho : 2 = 3 = 0 

• Can we do this using a t test – how about 2 t tests? 

• If we cannot reject Ho 2 = 0 and we cannot reject Ho 3 = 0 
then we cannot reject the above? 

• Not necessarily – the estimators of 2 and 3 are correlated 
– a test of joint hypothesis such as the above should  take 
this into account 

• Think of example of equation with multicollinearity?????? 

• Effects of mutlicollinearity – signs of multicollinearity…. 
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• So rule of thumb 

• If there is a single = sign it can be done as a 

t test (you need the VCV matrix – if this is 

not there take that as a hint that you have to 

do it a different way) 

• If there is more than 1 equals sign (multiple 

restrictions) it cannot be done as a t test – 

we will look in a future slide at the F test 

which is how we will do it. 
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• Multiple Regression Analysis 

 

 

•  y = 0 + 1x1 + 2x2 + . . . kxk + u 

 

•  3. Asymptotic Properties 
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 Econometrics V lecture 3  

Consistency 

•  Under the Gauss-Markov assumptions OLS 

is BLUE, but in other cases it won’t always 

be possible to find unbiased estimators 

•  In those cases, we may settle for estimators 

that are consistent, meaning as n  ∞, the 

distribution of the estimator collapses to the 

parameter value 

 

29 



Econometrics V lecture 3  

Sampling Distributions as n  

1 

n1 

n2 

n3 
n1 < n2 < n3 
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Consistency of OLS 

•  Under the Gauss-Markov assumptions, the 

OLS estimator is consistent (and unbiased) 

•  Consistency can be proved for the simple 

regression case in a manner similar to the 

proof of unbiasedness 

•  Will need to take probability limit (plim) to 

establish consistency 
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Proving Consistency 
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A Weaker Assumption 

•  For unbiasedness, we assumed a zero 
conditional mean – E(u|x1, x2,…,xk) = 0 

•  For consistency, we can have the weaker 
assumption of zero mean and zero 
correlation – E(u) = 0 and Cov(xj,u) = 0, for j 
= 1, 2, …, k 

•  Without this assumption, OLS will be biased 
and inconsistent! 
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Deriving the Inconsistency 

•  Just as we could derive the omitted variable bias 

earlier, now we want to think about the 

inconsistency, or asymptotic bias, in this case 
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Asymptotic Bias (cont) 

•  So, thinking about the direction of the 
asymptotic bias is just like thinking about the 
direction of bias for an omitted variable 

•  Main difference is that asymptotic bias uses 
the population variance and covariance, 
while bias uses the sample counterparts 

•  Remember, inconsistency is a large sample 
problem – it doesn’t go away as add data 
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Large Sample Inference 

•  Recall that under the CLM assumptions, the 
sampling distributions are normal, so we 
could derive t and F distributions for testing 

•  This exact normality was due to assuming 
the population error distribution was normal 

•  This assumption of normal errors implied 
that the distribution of y, given the x’s, was 
normal as well 

36 



Econometrics V lecture 3 

• If there are n data points to estimate 

parameters of both models from, then one 

can calculate the F statistic, given by 

 

 

 

 

• where RSSi is the residual sum of squares of 

model i. 
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Large Sample Inference (cont) 

•  Easy to come up with examples for which 

this exact normality assumption will fail 

•  Any clearly skewed variable, like wages, 

arrests, savings, etc. can’t be normal, since 

a normal distribution is symmetric 

•  Normality assumption not needed to 

conclude OLS is BLUE, only for inference 
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Central Limit Theorem 
 Based on the central limit theorem, we can show 

that OLS estimators are asymptotically normal 

 Asymptotic Normality implies that P(Z<z)F(z) 

as n , or P(Z<z)  F(z)  

 The central limit theorem states that the 

standardized average of any population with mean 

m and variance 2  is asymptotically ~N(0,1), or 
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Asymptotic Normality 
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Asymptotic Normality (cont) 

•  Because the t distribution approaches the 
normal distribution for large df, we can also 
say that 

    1~ˆˆ
 kn

a

jjj tse 
 Note that while we no longer need to 
assume normality with a large sample, we 
do still need homoskedasticity 
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Asymptotic Standard Errors 
 If u is not normally distributed, we sometimes 
will refer to the standard error as an asymptotic 
standard error, since 
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 So, we can expect standard errors to shrink at a 
rate proportional to the inverse of √n 
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Lagrange Multiplier statistic 

•  With large samples, by relying on 
asymptotic normality for inference, we can 
use more than t and F stats 

•  The Lagrange multiplier or LM statistic is an 
alternative for testing multiple exclusion 
restrictions 

•  Because the LM statistic uses an auxiliary 
regression it’s sometimes called an nR2 stat 
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LM Statistic (cont) 

•  Suppose we have a standard model, y = 0 + 1x1 

+ 2x2 + . . . kxk + u and our null hypothesis is 

•  H0: k-q+1 = 0, ... , k = 0 

•  First, we just run the restricted model 
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LM Statistic (cont) 

2

2
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~ , so can choose a critical

value, , from a  distribution, or

just calculate a p-value for 
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•  With a large sample, the result from an F test and 

from an LM test should be similar 

•  Unlike the F test and t test for one exclusion, the 

LM test and F test will not be identical 

45 



 
Econometrics V lecture 3  

Multiple Regression Analysis 

 

 y = 0 + 1x1 + 2x2 + . . . kxk + u 

 

 4. Further Issues 
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Asymptotic Efficiency 

•  Estimators besides OLS will be consistent 

•  However, under the Gauss-Markov 

assumptions, the OLS estimators will have 

the smallest asymptotic variances 

•  We say that OLS is asymptotically efficient 

•  Important to remember our assumptions 

though, if not homoskedastic, not true 
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Redefining Variables 

•  Changing the scale of the y variable will 

lead to a corresponding change in the scale 

of the coefficients and standard errors, so no 

change in the significance or interpretation 

•  Changing the scale of one x variable will 

lead to a change in the scale of that 

coefficient and standard error, so no change 

in the significance or interpretation 
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Beta Coefficients 

•  Occasional you’ll see reference to a 
“standardized coefficient” or “beta 
coefficient” which has a specific meaning 

•  Idea is to replace y and each x variable with 
a standardized version – i.e. subtract mean 
and divide by standard deviation 

•  Coefficient reflects standard deviation of y 
for a one standard deviation change in x  
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Functional Form 

•  OLS can be used for relationships that are 

not strictly linear in x and y by using 

nonlinear functions of x and y – will still be 

linear in the parameters 

•  Can take the natural log of x, y or both 

•  Can use quadratic forms of x 

•  Can use interactions of x variables 
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Interpretation of Log Models 

•  If the model is ln(y) = 0 + 1ln(x) + u 

•  1 is the elasticity of y with respect to x 

•  If the model is ln(y) = 0 + 1x + u 

•  1 is approximately the percentage change 
in y given a 1 unit change in x  

•  If the model is y = 0 + 1ln(x) + u 

•  1 is approximately the change in y for a 100 
percent change in x 
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Why use log models? 

•  Log models are invariant to the scale of the 
variables since measuring percent changes 

•  They give a direct estimate of elasticity 

•  For models with y > 0, the conditional 
distribution is often heteroskedastic or 
skewed, while ln(y) is much less so 

•  The distribution of ln(y) is more narrow, 
limiting the effect of outliers 
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Some Rules of Thumb 

•  What types of variables are often used in 
log form? 

•  Dollar amounts that must be positive 

•  Very large variables, such as population 

•  What types of variables are often used in 
level form? 

•  Variables measured in years 

•  Variables that are a proportion or percent 
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Quadratic Models 

•  For a model of the form y = 0 + 1x + 2x
2 + u we 

can’t interpret 1 alone as measuring the change in 

y with respect to x, we need to take into account 2 

as well, since 
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More on Quadratic Models 

•  Suppose that the coefficient on x is positive and 

the coefficient on x2 is negative 

•  Then y is increasing in x at first, but will eventually 

turn around and be decreasing in x 

 
1 2

*

1 2

ˆ ˆFor 0 and 0 the turning point

ˆ ˆwill be at 2x

 

 

 


55 



Econometrics V lecture 3  

More on Quadratic Models 

•  Suppose that the coefficient on x is negative and 

the coefficient on x2 is positive 

•  Then y is decreasing in x at first, but will eventually 

turn around and be increasing in x 
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Interaction Terms 

•  For a model of the form y = 0 + 1x1 + 2x2 + 

3x1x2 + u we can’t interpret 1 alone as measuring 

the change in y with respect to x1, we need to take 

into account 3 as well, since  

2

1

231

1

at  above  theevaluate

 typically weon   ofeffect  the

summarize  toso ,

x

yx

x
x

y
 





57 



Econometrics V lecture 3  

Adjusted R-Squared 

•  Recall that the R2 will always increase as more 

variables are added to the model 

• The adjusted R2 takes into account the number of 

variables in a model, and may decrease 
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Adjusted R-Squared (cont) 

•  It’s easy to see that the adjusted R2 is just (1 

– R2)(n – 1) / (n – k – 1), but most packages 

will give you both R2 and adj-R2 

•  You can compare the fit of 2 models (with 

the same y) by comparing the adj-R2 

•  You cannot use the adj-R2 to compare 

models with different y’s (e.g. y vs. ln(y)) 
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Goodness of Fit 

•  Important not to fixate too much on adj-R2 
and lose sight of theory and common sense 

•  If economic theory clearly predicts a 
variable belongs, generally leave it in 

•  Don’t want to include a variable that 
prohibits a sensible interpretation of the 
variable of interest – remember ceteris 
paribus interpretation of multiple regression 
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Standard Errors for Predictions 

•  Suppose we want to use our estimates 
to obtain a specific prediction? 

•  First, suppose that we want an estimate 
of E(y|x1=c1,…xk=ck) = q0 = 0+1c1+ …+ 
kck 

•  This is easy to obtain by substituting the 
x’s in our estimated model with c’s , but 
what about a standard error? 

•  Really just a test of a linear combination 
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Predictions (cont) 

•  Can rewrite as 0 = q0 – 1c1 – … – kck 

•  Substitute in to obtain y = q0 + 1 (x1 - c1) + 
… + k (xk - ck) + u  

•  So, if you regress yi on (xij - cij) the intercept 
will give the predicted value and its standard 
error 

•  Note that the standard error will be smallest 
when the c’s equal the means of the x’s 
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Predictions (cont) 

•  This standard error for the expected value is not 

the same as a standard error for an outcome on y 

•  We need to also take into account the variance in 

the unobserved error.  Let the prediction error be 

 
       

       2

1

220020

0000

0

000

110

000

ˆˆˆ so ,ˆ

ˆˆ and 0ˆ

ˆˆˆ











yseeseyVar

uVaryVareVareE

yuxxyye kk

63 



Econometrics V lecture 3  

Prediction interval 

 

 

0 0 0 0 0

1

0

0 0

.025

ˆ ˆ ˆ ˆ~ , so given that 

we have a 95% prediction interval for 

ˆ ˆ

n ke se e t e y y

y

y t se e

   

 

• Usually the estimate of s2 is much larger than the 

variance of the prediction, thus 

• This prediction interval will be a lot wider than the 

simple confidence interval for the prediction 
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Residual Analysis 

•  Information can be obtained from looking at 
the residuals (i.e. predicted vs. observed) 

•  Example: Regress price of cars on 
characteristics – big negative residuals 
indicate a good deal 

•  Example: Regress average earnings for 
students from a school on student 
characteristics – big positive residuals 
indicate greatest value-added 
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Predicting y in a log model 

•  Simple exponentiation of the predicted ln(y) will 

underestimate the expected value of y 

•  Instead need to scale this up by an estimate of the 

expected value of exp(u) 

   
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Predicting y in a log model 

•  If u is not normal, E(exp(u)) must be 
estimated using an auxiliary regression 

•  Create the exponentiation of the predicted 
ln(y), and regress y on it with no intercept  

•  The coefficient on this variable is the 
estimate of E(exp(u)) that can be used to 
scale up the exponentiation of the predicted 
ln(y) to obtain the predicted y 
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Comparing log and level models 

•  A by-product of the previous procedure is a 
method to compare a model in logs with one 
in levels.   

•  Take the fitted values from the auxiliary 
regression, and find the sample correlation 
between this and y  

•  Compare the R2 from the levels regression 
with this correlation squared 
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