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Assumptions of the Classical Linear Model (CLM) 

•  So far, we know that given the Gauss-
Markov assumptions, OLS is BLUE,  

•  In order to do classical hypothesis testing, 
we need to add another assumption (beyond 
the Gauss-Markov assumptions) 

•  Assume that u is independent of x1, x2,…, xk 
and u is normally distributed with zero mean 
and variance s2: u ~ Normal(0,s2) 
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CLM Assumptions (cont) 

•  Under CLM, OLS is not only BLUE, but is 
the minimum variance unbiased estimator 

•  We can summarize the population 
assumptions of CLM as follows 

•  y|x ~ Normal(b0 + b1x1 +…+ bkxk, s
2) 

•  While for now we just assume normality, 
clear that sometimes not the case 

•  Large samples will let us drop normality 
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Normal Sampling Distributions 
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The t Test 
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The t Test (cont) 

•  Knowing the sampling distribution for the 

standardized estimator allows us to carry out 

hypothesis tests 

•  Start with a null hypothesis 

•  For example,  H0: bj=0 

•  If accept null, then accept that xj has no 

effect on y, controlling for other x’s 
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The t Test (cont) 
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t Test: One-Sided Alternatives 

•  Besides our null, H0, we need an alternative 
hypothesis, H1, and a significance level 

•  H1 may be one-sided, or two-sided 

•  H1: bj > 0 and H1: bj < 0 are one-sided 

•  H1: bj  0 is a two-sided alternative 

•  If we want to have only a 5% probability of 
rejecting H0 if it is really true, then we say our 
significance level is 5% 
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One-Sided Alternatives (cont) 

•  Having picked a significance level, a, we 
look up the (1 – a)th percentile in a t 
distribution with n – k – 1 df and call this c, 
the critical value  

•  We can reject the null hypothesis if the t 
statistic is greater than the critical value 

•  If the t statistic is less than the critical value 
then we fail to reject the null 
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yi  =  b0  +  b1xi1  + …  + bkxik + ui 

 

H0: bj = 0                       H1: bj > 0 

c 0 

a 1  a 

One-Sided Alternatives (cont) 

Fail to reject 

reject 
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One-sided vs Two-sided 

•  Because the t distribution is symmetric, 
testing H1: bj < 0 is straightforward.  The 
critical value is just the negative of before 

•  We can reject the null if the t statistic < –c, 
and if the t statistic > than –c then we fail to 
reject the null 

•  For a two-sided test, we set the critical value 
based on a/2 and reject H1: bj  0 if the 
absolute value of the t statistic > c 
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yi  =  b0  +  b1Xi1  + …  + bkXik + ui 

 

H0: bj = 0                       H1: bj  0 
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-c 
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Two-Sided Alternatives 
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Summary for H0: bj = 0 

•  Unless otherwise stated, the alternative is 

assumed to be two-sided 

•  If we reject the null, we typically say “xj is 

statistically significant at the a % level” 

•  If we fail to reject the null, we typically say 

“xj is statistically insignificant at the a % 

level” 
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Testing other hypotheses 

• A more general form of the t statistic 
recognizes that we may want to test 
something like H0: bj = aj  

• In this case, the appropriate t statistic is 
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Confidence Intervals 

•  Another way to use classical statistical testing is to 

construct a confidence interval using the same 

critical value as was used for a two-sided test 

•  A (1 - a) % confidence interval is defined as 
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Computing p-values for t tests 

•  An alternative to the classical approach is to 
ask, “what is the smallest significance level 
at which the null would be rejected?” 

•  So, compute the t statistic, and then look up 
what percentile it is in the appropriate t 
distribution – this is the p-value 

•  p-value is the probability we would observe 
the t statistic we did, if the null were true 
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Stata and p-values, t tests, etc. 

•  Most computer packages will compute the 
p-value for you, assuming a two-sided test 

•  If you really want a one-sided alternative, 
just divide the two-sided p-value by 2 

•  GRETL provides the t statistic, p-value, and 
95% confidence interval for H0: bj = 0 for you, 
labelled “t”, “P > |t|” and “[95% Conf. 
Interval]”, respectively 
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Testing a Linear Combination 

•  Suppose instead of testing whether b1 is equal to a 

constant, you want to test if it is equal to another 

parameter, that is H0 : b1 = b2 

•  Use same basic procedure for forming a t statistic  
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Testing Linear Combo (cont) 
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Testing a Linear Combo (cont) 

•  So, to use formula, need s12, which standard 
output does not have 

•  Many packages will have an option to get it, 
or will just perform the test for you 

• More generally, you can always restate the 
problem to get the test you want 
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Example: 

•  Suppose you are interested in the effect of campaign 

expenditures on outcomes 

•  Model is voteA = b0 + b1log(expendA) + 

b2log(expendB) + b3prtystrA + u 

•  H0: b1 = - b2, or H0: q1 = b1 + b2 = 0 

•  b1 = q1 – b2, so substitute in and rearrange   voteA 

= b0 + q1log(expendA) + b2log(expendB - expendA) + 

b3prtystrA + u 
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Example (cont): 

•  This is the same model as originally, but 
now you get a standard error for b1 – b2 = q1 
directly from the basic regression 

•  Any linear combination of parameters could 
be tested in a similar manner 

•  Other examples of hypotheses about a 
single linear combination of parameters: 

 b1 = 1 + b2 ; b1 = 5b2 ; b1 = -1/2b2 ; etc  
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Multiple Linear Restrictions 

•  Everything we’ve done so far has involved 
testing a single linear restriction, (e.g. b1 = 0  
or b1 = b2 ) 

•  However, we may want to jointly test 
multiple hypotheses about our parameters 

•  A typical example is testing “exclusion 
restrictions” – we want to know if a group of 
parameters are all equal to zero 
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Testing Exclusion Restrictions 

•  Now the null hypothesis might be something 
like H0: bk-q+1 = 0, ... , bk = 0 

•  The alternative is just H1: H0 is not true 

•  Can’t just check each t statistic separately, 
because we want to know if the q 
parameters are jointly significant at a given 
level – it is possible for none to be 
individually significant at that level 
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Exclusion Restrictions (cont) 

•  To do the test we need to estimate the 

“restricted model” without xk-q+1,, …, xk 

included, as well as the “unrestricted model” 

with all x’s included 

•  Intuitively, we want to know if the change in 

SSR is big enough to warrant inclusion of xk-

q+1,, …, xk   
 

edunrestrict isur  and restricted isr 
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The F statistic 

•  The F statistic is always positive, since the 
SSR from the restricted model can’t be less 
than the SSR from the unrestricted 

•  Essentially the F statistic is measuring the 
relative increase in SSR when moving from 
the unrestricted to restricted model 

•  q = number of restrictions, or dfr – dfur 

•  n – k – 1 =  dfur 
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The F statistic (cont) 

•  To decide if the increase in SSR when we 

move to a restricted model is “big enough” to 

reject the exclusions, we need to know about 

the sampling distribution of our F stat 

•  Not surprisingly, F ~ Fq,n-k-1, where q is 

referred to as the numerator degrees of 

freedom and n – k – 1 as the denominator 

degrees of freedom  
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The R2 form of the F statistic 

•  Because the SSR’s may be large and unwieldy, an 

alternative form of the formula is useful 

•  We use the fact that SSR = SST(1 – R2) for any 

regression, so can substitute in for SSRu and 

SSRur 
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Overall Significance 

•  A special case of exclusion restrictions is to test 

H0: b1 =  b2 =…=  bk = 0 

•  Since the R2 from a model with only an intercept 

will be zero, the F statistic is simply 
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General Linear Restrictions 

•  The basic form of the F statistic will work for 

any set of linear restrictions 

•  First estimate the unrestricted model and 

then estimate the restricted model 

•  In each case, make note of the SSR 

•  Imposing the restrictions can be tricky – will 

likely have to redefine variables again 
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Example: 

•  Use same voting model as before 

•  Model is voteA = b0 + b1log(expendA) + 
b2log(expendB) + b3prtystrA + u 

•  now null is H0: b1 = 1, b3 = 0 

•  Substituting in the restrictions:  voteA = b0 + 
log(expendA) + b2log(expendB) + u, so 

•  Use voteA - log(expendA) = b0 + 
b2log(expendB) + u as restricted model 
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F Statistic Summary 

•  Just as with t statistics, p-values can be 
calculated by looking up the percentile in the 
appropriate F distribution 

•  Stata will do this by entering: display 
fprob(q, n – k – 1, F), where the appropriate 
values of F, q,and n – k – 1 are used 

•  If only one exclusion is being tested, then F 
=  t2, and the p-values will be the same 

Econometrics V Lecture IV 
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Dummy Variables 

•  A dummy variable is a variable that takes on 

the value 1 or 0 

•  Examples:  male (= 1 if are male, 0 

otherwise), south (= 1 if in the south, 0 

otherwise), etc. 

•  Dummy variables are also called binary 

variables, for obvious reasons 

3

6 



Econometrics V Lecture IV  

A Dummy Independent Variable 

•  Consider a simple model with one 

continuous variable (x) and one dummy (d)  

•  y = b0 + d0d + b1x + u 

•  This can be interpreted as an intercept shift 

•  If d = 0, then y = b0 + b1x + u 

•  If d = 1, then y = (b0 + d0) + b1x + u 

•  The case of d = 0 is the base group 
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Example of d0 > 0 

x 

y 

{ d0 

} b0 

y = (b0 + d0) + b1x 

y = b0 + b1x 

slope = b1 

d = 0 

d = 1 
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Dummies for Multiple Categories 

•  We can use dummy variables to control for 
something with multiple categories 

•  Suppose everyone in your data is either a 
HS dropout, HS grad only, or college grad 

•  To compare HS and college grads to HS 
dropouts, include 2 dummy variables 

•  hsgrad = 1 if HS grad only, 0 otherwise; and 
colgrad = 1 if college grad, 0 otherwise 
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Multiple Categories (cont) 

•  Any categorical variable can be turned into 
a set of dummy variables 

•  Because the base group is represented by 
the intercept, if there are n categories there 
should be n – 1 dummy variables 

•  If there are a lot of categories, it may make 
sense to group some together 

•  Example: top 10 ranking, 11 – 25, etc. 
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Interactions Among Dummies 

•  Interacting dummy variables is like subdividing the 
group 

•  Example: have dummies for male, as well as hsgrad 
and colgrad 

•  Add male*hsgrad and male*colgrad, for a total of 5 
dummy variables –> 6 categories 

•  Base group is female HS dropouts 

•  hsgrad is for female HS grads, colgrad is for female 
college grads 

•  The interactions reflect male HS grad 41 s and male 
college grads 
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 More on Dummy Interactions 

•  Formally, the model is y = b0 + d1male + 
d2hsgrad + d3colgrad + d4male*hsgrad + 
d5male*colgrad + b1x + u, then, for example: 

•  If male = 0 and hsgrad = 0 and colgrad = 0 

•  y = b0 + b1x + u 

•  If male = 0 and hsgrad = 1 and colgrad = 0 

•  y = b0 + d2hsgrad + b1x + u 

•  If male = 1 and hsgrad = 0 and colgrad = 1 

•  y = b0 + d1male + d3colgrad + d5male*colgrad 
+ b1x + u 

4
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Other Interactions with Dummies 

•  Can also consider interacting a dummy 

variable, d, with a continuous variable, x 

•  y = b0 + d1d + b1x + d2d*x + u 

•  If d = 0, then y = b0 + b1x + u 

•  If d = 1, then y = (b0 + d1) + (b1+ d2) x + u 

•  This is interpreted as a change in the slope 
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y 

x 

y = b0 + 

b1x 

y = (b0 + d0) + (b1 + d1) x 
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Example of d0 > 0 and d1 < 

0 

d = 1 

d = 0 
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Testing for Differences Across Groups 

•  Testing whether a regression function is 

different for one group versus another can be 

thought of as simply testing for the joint 

significance of the dummy and its 

interactions with all other x variables 

•  So, you can estimate the model with all the 

interactions and without and form an F 

statistic, but this could be unwieldy 
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The Chow Test 

•  Turns out you can compute the proper F 
statistic without running the unrestricted 
model with interactions with all k continuous 
variables 

•  If run the restricted model for group one and 
get SSR1, then for group two and get SSR2 

•  Run the restricted model for all to get SSR, 
then 

   1 2

1 2

2 1

1

SSR SSR SSR n k
F

SSR SSR k
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 
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The Chow Test (continued) 

•  The Chow test is really just a simple F test 
for exclusion restrictions, but we’ve realized 
that SSRur = SSR1 + SSR2 

•  Note, we have k + 1 restrictions (each of the 
slope coefficients and the intercept) 

•  Note the unrestricted model would estimate 
2 different intercepts and 2 different slope 
coefficients, so the df is n – 2k – 2  
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Linear Probability Model 

•  P(y = 1|x) = E(y|x), when y is a binary 
variable, so we can write our model as 

•  P(y = 1|x) = b0 + b1x1 + … + bkxk 

•  So, the interpretation of bj is the change in 
the probability of success when xj changes 

•  The predicted y is the predicted probability 
of success 

•  Potential problem that can be outside [0,1] 
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Linear Probability Model (cont) 

•  Even without predictions outside of [0,1], we 
may estimate effects that imply a change in x 
changes the probability by more than +1 or –
1, so best to use changes near mean 

•  This model will violate assumption of 
homoskedasticity, so will affect inference 

•  Despite drawbacks, it’s usually a good place 
to start when y is binary 
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Caveats on Program Evaluation 

•  A typical use of a dummy variable is when 
we are looking for a program effect 

•  For example, we may have individuals that 
received job training, or welfare, etc 

•  We need to remember that usually 
individuals choose whether to participate in a 
program, which may lead to a self-selection 
problem 
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Self-selection Problems 

•  If we can control for everything that is 
correlated with both participation and the 
outcome of interest then it’s not a problem 

•  Often, though, there are unobservables that 
are correlated with participation 

•  In this case, the estimate of the program 
effect is biased, and we don’t want to set 
policy based on it! 
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What is Heteroskedasticity 
•  Recall the assumption of homoskedasticity implied 

that conditional on the explanatory variables, the 
variance of the unobserved error, u, was constant 

•  If this is not true, that is if  the variance of u is 
different for different values of the x’s, then the 
errors are heteroskedastic 

•  Example: estimating returns to education and 
ability is unobservable, and think the variance in 
ability differs by educational attainment 
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Example of Heteroskedasticity 

x3 

. 
. 

E(y|x) = b0 + b1x 
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Why Worry About Heteroskedasticity? 

•  OLS is still unbiased and consistent, 

even if we do not assume 

homoskedasticity 

•  The standard errors of the estimates are 

biased if we have heteroskedasticity 

•  If the standard errors are biased, we can 

not use the usual t statistics or F 

statistics or LM statistics for drawing 

inferences 55 
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Variance with Heteroskedasticity 
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• Since the standard error of        is based 

 

• Directly on estimating the variance  

 

• We need to be able to estimate the previous eqn 

on the middle of the previous slide.  

• When heteroscedasticity is present. White 

(1980) showed this can be done. Let Ûi denote 

the OLS residuals from the initial regression of y 

on x 

1b

1b
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• Then a valid estimator of Var     for 

heteroscedasticity of any form is: 

 

 

 

 

• Why? It can be shown that when the equation 

above is multiplied by n the sample size, its 

converges in probability to: 
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This is what is necessary for justifying the 

use of standard errors to construct 

confidence intervals and t statistics 
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Variance with Heteroskedasticity 
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Robust Standard Errors 

•  Now that we have a consistent estimate of 
the variance, the square root can be used as 
a standard error for inference 

•  Typically call these robust standard errors 

•  Sometimes the estimated variance is 
corrected for degrees of freedom by 
multiplying by n/(n – k – 1) 

•  As n → ∞ it’s all the same, though 
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Robust Standard Errors (cont) 

•  Important to remember that these robust 

standard errors only have asymptotic 

justification – with small sample sizes t 

statistics formed with robust standard errors 

will not have a distribution close to the t, and 

inferences will not be correct 
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A Robust LM Statistic 
•  Run OLS on the restricted model and save the 

residuals ŭ 

•  Regress each of the excluded variables on all of 
the included variables (q different regressions) and 
save each set of residuals ř1, ř2, …, řq 

•  Regress a variable defined to be = 1 on ř1 ŭ, ř2 ŭ, 
…, řq ŭ, with no intercept 

•  The LM statistic is n – SSR1, where SSR1 is the 
sum of squared residuals from this final regression 
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Testing for Heteroskedasticity 

•  Essentially want to test H0: Var(u|x1, x2,…, 

xk) = s2, which is equivalent to H0: E(u2|x1, 

x2,…, xk) = E(u2) = s2 

•  If assume the relationship between u2 and xj 

will be linear, can test as a linear restriction 

•  So, for u2 = d0 + d1x1 +…+ dk xk + v) this 

means testing H0: d1 = d2 = … = dk = 0 
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The Breusch-Pagan Test  

•  Don’t observe the error, but can estimate it 
with the residuals from the OLS regression 

•  After regressing the residuals squared on all 
of the x’s, can use the R2 to form an F or LM 
test 

•  The F statistic is just the reported F statistic 
for overall significance of the regression, F = 
[R2/k]/[(1 – R2)/(n – k – 1)], which is 
distributed Fk, n – k - 1 

•  The LM statistic is LM = nR2, which is 
distributed c2
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The White Test 

•  The Breusch-Pagan test will detect any 

linear forms of heteroskedasticity 

•  The White test allows for nonlinearities 

by using squares and crossproducts of 

all the x’s 

•  Still just using an F or LM to test 

whether all the xj, xj
2, and xjxh are jointly 

significant 

•  This can get to be unwieldy pretty 

quickly 
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Alternate form of the White test 

•  Consider that the fitted values from OLS, ŷ, 
are a function of all the x’s 

•  Thus, ŷ2 will be a function of the squares 
and crossproducts and ŷ and ŷ2 can proxy 
for all of the xj, xj

2, and xjxh, so  

•  Regress the residuals squared on ŷ and ŷ2 
and use the R2 to form an F or LM statistic 

•  Note only testing for 2 restrictions now 
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Weighted Least Squares 

•  While it’s always possible to estimate robust 

standard errors for OLS estimates, if we 

know something about the specific form of 

the heteroskedasticity, we can obtain more 

efficient estimates than OLS 

•  The basic idea is going to be to transform 

the model into one that has homoskedastic 

errors – called weighted least squares 
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Case of form being known up to a multiplicative constant 

•  Suppose the heteroskedasticity can be 
modeled as Var(u|x) = s2h(x), where the 
trick is to figure out what h(x) ≡ hi looks 
like 

• E(ui/√hi|x) = 0, because hi is only a 
function of x, and Var(ui/√hi|x) = s2, 
because we know Var(u|x) = s2hi 

•  So, if we divided our whole equation by 
√hi we would have a model where the 
error is homoskedastic  69 
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Generalized Least Squares 

•  Estimating the transformed equation by OLS 

is an example of generalized least squares 

(GLS)  

•  GLS will be BLUE in this case 

•  GLS is a weighted least squares (WLS) 

procedure where each squared residual is 

weighted by the inverse of Var(ui|xi) 
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Weighted Least Squares 

•  While it is intuitive to see why performing 
OLS on a transformed equation is 
appropriate, it can be tedious to do the 
transformation 

•  Weighted least squares is a way of getting 
the same thing, without the transformation 

•  Idea is to minimize the weighted sum of 
squares (weighted by 1/hi) 
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More on WLS 

•  WLS is great if we know what Var(ui|xi) 
looks like 

•  In most cases, won’t know form of 
heteroskedasticity 

•  Example where do is if data is aggregated, 
but model is individual level 

•  Want to weight each aggregate observation 
by the inverse of the number of individuals 
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Feasible GLS 

•  More typical is the case where you don’t 

know the form of the heteroskedasticity 

•  In this case, you need to estimate h(xi) 

•  Typically, we start with the assumption of a 

fairly flexible model, such as 

•  Var(u|x) = s2exp(d0 + d1x1 + …+ dkxk)  

•  Since we don’t know the d, must estimate 
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Feasible GLS (continued) 

•  Our assumption implies that u2 = s2exp(d0 + 

d1x1 + …+ dkxk)v 

•  Where E(v|x) = 1, then if E(v) = 1 

•  ln(u2) = a0 + d1x1 + …+ dkxk + e 

•  Where E(e) = 1 and e is independent of x 

•  Now, we know that û is an estimate of u, so 

we can estimate this by OLS 
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 Feasible GLS (continued) 

•  Now, an estimate of h is obtained as ĥ = 
exp(ĝ), and the inverse of this is our 
weight 

•  So, what did we do?   

•  Run the original OLS model, save the 
residuals, û, square them and take the log 

•  Regress ln(û2) on all of the independent 
variables and get the fitted values, ĝ 

•  Do WLS using 1/exp(ĝ) as the weight 

75 



Econometrics V Lecture IV  

WLS Wrapup 

•  When doing F tests with WLS, form the weights 

from the unrestricted model and use those 

weights to do WLS on the restricted model as 

well as the unrestricted model 

•  Remember we are using WLS just for efficiency 

– OLS is still unbiased & consistent 

•  Estimates will still be different due to sampling 

error, but if they are very different then it’s likely 

that some other Gauss-Markov assumption is 
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Multiple Regression Analysis 

 

 y = b0 + b1x1 + b2x2 + . . . bkxk + u 

 

 Specification and Data Problems 
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Functional Form 

•  We’ve seen that a linear regression can 

really fit nonlinear relationships 

•  Can use logs on RHS, LHS or both 

•  Can use quadratic forms of x’s  

•  Can use interactions of x’s 

•  How do we know if we’ve gotten the right 

functional form for our model? 
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Functional Form (continued) 

•  First, use economic theory to guide you 

•  Think about the interpretation  

•  Does it make more sense for x to affect y in 

percentage (use logs) or absolute terms? 

•  Does it make more sense for the derivative 

of x1 to vary with x1 (quadratic) or with x2 

(interactions) or to be fixed? 

79 



Econometrics V Lecture IV  

Functional Form (continued) 
•  We already know how to test joint exclusion 

restrictions to see if higher order terms or 
interactions belong in the model 

•  It can be tedious to add and test extra 
terms, plus may find a square term matters 
when really using logs would be even better 

•  A test of functional form is Ramsey’s 
regression specification error test (RESET) 
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Ramsey’s RESET 

•  RESET relies on a trick similar to the 

special form of the White test 

•  Instead of adding functions of the x’s 

directly, we add and test functions of ŷ 

•   So, estimate y = b0 + b1x1 + … + bkxk + 

d1ŷ
2 + d1ŷ

3 +error and test 

•  H0: d1 = 0, d2 = 0 using F~F2,n-k-3 or 

LM~χ2
2 
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No nested Alternative Tests 

•  If the models have the same dependent 

variables, but nonnested x’s could still just 

make a giant model with the x’s from both 

and test joint exclusion restrictions that lead 

to one model or the other 

•  An alternative, the Davidson-MacKinnon 

test, uses ŷ from one model as regressor in 

the second model and tests for significance 
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Nonnested Alternatives (cont) 

•  More difficult if one model uses y and the 

other uses ln(y) 

•  Can follow same basic logic and transform 

predicted ln(y) to get ŷ for the second step 

•  In any case, Davidson-MacKinnon test may 

reject neither or both models rather than 

clearly preferring one specification 
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Proxy Variables 

•  What if model is misspecified because no 
data is available on an important x variable? 

•  It may be possible to avoid omitted variable 
bias by using a proxy variable 

•  A proxy variable must be related to the 
unobservable variable – for example: x3* = d0 
+ d3x3 + v3, where * implies unobserved 

•  Now suppose we just substitute x3 for x3*  

84 



Econometrics V Lecture IV  

Proxy Variables (continued) 

•  What do we need for for this solution to give 
us consistent estimates of b1 and b2? 

•  E(x3* | x1, x2, x3) = E(x3* | x3) = d0 + d3x3  

•  That is, u is uncorrelated with x1, x2 and x3* 
and v3 is uncorrelated with x1, x2 and x3 

•  So really running y = (b0 + b3d0) + b1x1+  
b2x2 + b3d3x3 + (u + b3v3) and have just 
redefined intercept, error term x3 coefficient 
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Proxy Variables (continued) 

•  Without out assumptions, can end up with 
biased estimates 

•  Say x3* = d0 + d1x1 + d2x2 + d3x3 + v3 

•  Then really running y = (b0 + b3d0) + (b1 + 
b3d1) x1+ (b2 + b3d2) x2 + b3d3x3 + (u + b3v3)  

•  Bias will depend on signs of b3 and dj 

•  This bias may still be smaller than omitted 
variable bias, though 
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Lagged Dependent Variables 

•  What if there are unobserved variables, and 
you can’t find reasonable proxy variables? 

•  May be possible to include a lagged 
dependent variable to account for omitted 
variables that contribute to both past and 
current levels of y 

•  Obviously, you must think past and current y 
are related for this to make sense 
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Measurement Error 

•  Sometimes we have the variable we want, 
but we think it is measured with error 

•  Examples: A survey asks how many hours 
did you work over the last year, or how many 
weeks you used child care when your child 
was young 

•  Measurement error in y different from 
measurement error in x 
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Measurement Error in a Dependent Variable 

•  Define measurement error as e0 = y – y* 

•  Thus, really estimating y = b0 + b1x1 + …+ 
bkxk + u + e0 

•  When will OLS produce unbiased results? 

•  If e0 and xj, u are uncorrelated is unbiased 

•  If E(e0) ≠ 0 then  b0 will be biased, though 

•  While unbiased, larger variances than with 
no measurement error 
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Measurement Error in an Explanatory Variable 

•  Define measurement error as e1 = x1 – x1* 

•  Assume E(e1) = 0 , E(y| x1*, x1) = E(y| x1*) 

•  Really estimating y = b0 + b1x1 + (u – b1e1) 

•  The effect of measurement error on OLS 
estimates depends on our assumption about 
the correlation between e1 and x1  

•  Suppose Cov(x1, e1) = 0 

•  OLS remains unbiased, variances larger 
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Measurement Error in an Explanatory Variable (cont) 

•  Suppose Cov(x1
*, e1) = 0, known as the classical 

errors-in-variables assumption, then 

•  Cov(x1, e1) = E(x1e1) = E(x1
*e1) + E(e1

2) = 0 + se
2 

• x1 is correlated with the error so estimate is biased 
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Measurement Error in an Explanatory Variable (cont) 

•  Notice that the multiplicative error is just 

Var(x1*)/Var(x1) 

•  Since Var(x1*)/Var(x1) < 1, the estimate is 

biased toward zero – called attenuation bias 

•  It’s more complicated with a multiple 

regression, but can still expect attenuation 

bias with classical errors in variables 
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Missing Data – Is it a Problem? 

•  If any observation is missing data on one of 
the variables in the model, it can’t be used  

•  If data is missing at random, using a sample 
restricted to observations with no missing 
values will be fine 

•  A problem can arise if the data is missing 
systematically – say high income individuals 
refuse to provide income data 
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Nonrandom Samples 

•  If the sample is chosen on the basis of an x 
variable, then estimates are unbiased 

•  If the sample is chosen on the basis of the y 
variable, then we have sample selection bias 

•  Sample selection can be more subtle 

•  Say looking at wages for workers – since 
people choose to work this isn’t the same as 
wage offers 
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Outliers 

•  Sometimes an individual observation can be 
very different from the others, and can have 
a large effect on the outcome 

•  Sometimes this outlier will simply be do to 
errors in data entry – one reason why 
looking at summary statistics is important 

•  Sometimes the observation will just truly be 
very different from the others 
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Outliers (continued) 

•  Not unreasonable to fix observations where 
it’s clear there was just an extra zero entered 
or left off, etc. 

•  Not unreasonable to drop observations that 
appear to be extreme outliers, although 
readers may prefer to see estimates with 
and without the outliers 

•  Can use GRETL to investigate outliers 
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