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Abstract 

This paper features a new ACD model which sits within the theoretical framework 

provided by the recently developed observation-driven time series models by Creal, 

et al (2013):  the Generalized Autoregressive Score (GAS) models.  The ACDD 

model itself contains three novelties. First, durations (intra-trade intervals or waiting-

times) are signed, based on whether a (positive) ask-driven trade or a (negative) bid-

driven trade occurred. These signed trade-durations are known as directional 

durations. Second, as the resultant directional durations are no longer positive and 

asymmetrical but are symmetrically distributed, the familiar GARCH-like formulation 

of the ACD process is proposed for modelling these directional durations. 

Consequently, the proposed model is called the Autoregressive Conditional 

Directional Duration (ACDD) model. Third, using the alternative GARCH-like 

formulation, persistence or long-memory in the durations is easily addressed both via 

the mean and variance equations: the mean equation uses a Semi-parametric 

Fractional Autoregressive (SEMIFAR) formulation and the variance equation uses a 
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GARCH formulation. The paper demonstrates the flexibility and convenience of the 

GAS model framework in the context of a particular ACD model specification. The 

model can be viewed as an alternative extension of the ‘Asymmetric ACD model’ of 

Bauwens and Giot (2003) which captures information related to the evolution of 

prices as well as the quote-durations. 

 

Keywords: ACD model, ACDD model, directional duration, SEMIFAR, GAS models. 

1 Introduction 

High-frequency financial time series have become widely available during the past 

decade or so. Records of all transactions and quoted prices are readily available in 

pre-determined formats from many stock exchanges. An inherent feature is that such 

data are irregularly spaced in time. Several approaches have been taken to address 

this feature of the data. 

 

The seminal work originated with Engle and Russell [9], where the time between 

events (trades, quotes, price changes etc.) or durations are the quantities being 

modelled. These authors proposed a class of models called the Autoregressive 

Conditional Duration, or ACD, models, where conditional (expected) durations are 

modelled in a fashion similar to the way conditional variances are modelled using 

ARCH and GARCH models of Engle [8] and Bollerslev [5]. 

 

ACD models and GARCH models share several common features, ACD models 

being commonly viewed as the counterpart of GARCH models for duration data. 

Both models rely on a similar economic motivation following from the clustering of 

news and financial events in the markets. The autoregressive ACD model captures 
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the duration clustering observed in high frequency data, i.e. small (large) durations 

being followed by other small (large) durations in a way similar to the way the 

GARCH model accounts for volatility clustering. Just as a low order GARCH model is 

often found to suffice for removing the dependence in squared returns, a low order 

ACD model is often successful in removing the temporal dependence in durations 

(see Pacurar [16]). Following the GARCH literature, a number of extensions to the 

original linear ACD model by Engle and Russell [9] have been suggested. These 

include the logarithmic ACD model of Bauwens and Giot [1], and the threshold ACD 

model of Zhang, Russell and Tsay [17]. The error distributions associated with the 

conditional durations has also been suggested to have several different shapes. 

Examples include the exponential and Weibull distributions as in Engle and Russell 

[9], and the Burr and generalized gamma distributions utilised by Grammig and 

Maurer [9] respectively. However, a crucial assumption for obtaining the quasi-

maximum likelihood (QML) consistent estimates of the ACD model and its 

extensions is that the conditional expectation of durations is correctly specified and 

that the model is linear. The QML estimations yield consistent estimates and the 

inference procedures in this case are straightforward to implement, but this comes at 

the cost of efficiency. In practice, fully efficient maximum likelihood (ML) estimates 

might be preferred if the nature of the underlying distribution is known; however, this 

is not likely to be the case.  

 

The original ACD models focus on taking into account the duration between market 

events; quote or price changes, and did not include information inherent in the 

evolution of the price process in the dynamics of the model. A significant departure 

from this is the Asymmetric ACD model of Bauwens and Giot [2] who follow a 
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direction first explored by Russell and Engle (2002) in their Autoregressive 

Conditional Multinomial Model which featured an ACD model fitted to the durations 

plus a generalized linear model of the conditional transition probabilities of the price 

process. The advantage of this type of approach is that other market-microstructure 

related information such as the traded volume and the corresponding transaction 

prices, bid and ask quotes offered by the market makers, can be directly included to 

enhance the precision and forecasting ability of the model.  

 

The model developed in this paper is a variant of the asymmetric approach explored 

by Bauwens and Giot [2] and it sits within the context of recent work by Creal, et al 

[6] in their development of the Generalized Autoregressive Score (GAS) models 

provides a natural framework for our model. This new class of observation-driven 

time series models adopts a mechanism to update the parameters over time by 

using the scaled score of the likelihood function. This approach provides a unified 

and consistent framework for introducing time-varying parameters in a wide class of 

nonlinear models. They suggest that their GAS model encompasses other well-

known models such as the generalized autoregressive conditional heteroskedasticity 

(GARCH models), autoregressive conditional duration (ACD models), autoregressive 

conditional intensity, and Poisson count models with time-varying means. 

 

Time series models with time-varying parameters can be divided into two classes of 

models: observation-driven models and parameter-driven models. In the former 

approach, time variation of the parameters is introduced by letting parameters be 

functions of lagged dependent variables as well as contemporaneous and lagged 

exogenous variables. Although the parameters are stochastic, they are perfectly 
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predictable given the past information. This simplifies likelihood evaluation and 

observation-driven models have become popular in the applied statistics and 

econometrics literature. Typical examples of these models are the generalized 

autoregressive conditional heteroskedasticity (GARCH) models of Engle [8], and  

Bollerslev [5], and the autoregressive conditional duration (ACD) and model of Engle 

and Russell [9]. In the latter, parameter-driven models, the parameters are stochastic 

processes with their own sources of error. An example of this class of models would 

be stochastic volatility models, as discussed by Shephard [17]. 

 

Creal, et al [6] formulate their general class of observation-driven time-varying 

parameter models and exploit the full density structure of the score function. In this 

class of models, the time-varying parameter ft  and the score depend on the full 

underlying density structure. They demonstrate that their GAS model structure can 

nest both GARCH (1,1) models and ACD (1,1) models as well as MEM models 

(multiplicative error models).   

 

They proceed as follows: Let 𝑁𝑥1 vector yt  represent the dependent variable of 

interest, ft   the time varying parameter  vector, xt    a vector of exogenous variables, 

(covariates), all at time t, and θ a vector of static parameters. Define Yt = {𝑦1, . . , 𝑦𝑡}, 

𝐹𝑡 = {𝑓0, 𝑓1, … , 𝑓𝑡} , and 𝑋𝑡 = {𝑥1, … 𝑥𝑡}. The available information set available at time 

t consists of {𝑓𝑡, 𝐹𝑡}, where 

Ϝ𝑡 = {𝑌𝑡−1, 𝐹𝑡−1, 𝑋𝑡}, for t = 1,….,n 

It is assumed that yt is generated by the observation density 

 𝑦𝑡 ~𝑝(𝑦𝑡|𝑓𝑡, Ϝ𝑡; 𝜃) 

 

(1) 



6 
 

To set the model framework in the familiar autoregressive context that provides the 

context for both GARCH and ACD models assume that the mechanism for updating 

the time-varying parameter ft  is given by an autoregressive updating equation: 

 

𝑓𝑡+1 = 𝜔 + ∑ 𝐴𝑖𝑠𝑡−𝑖+1 + ∑ 𝐵𝑗𝑓𝑡−𝑗+1

𝑞

𝑗=1

𝑝

𝑖=1

 

 

(2) 

Where ω is a vector of constants, the coefficient matrices Ai and Bj have the 

appropriate dimensions for i = 1,….,p and j = 1,….,q, while st  is an appropriate 

function of past data.  The unknown coefficients to be estimated in the expression 

above are functions of θ. Clearly, both GARCH and ACD models sit within this 

general GAS framework.  

 

Our model developed in this paper presents a simple modification of the basic ACD 

model. The inherent limitations in the ACD model and its extensions to date have 

been a direct consequence of the positive asymmetric density assumed for the 

innovations, i  in all these models; as time between successive trades are positive 

(see Hautsch [13]). Distributions defined on positive support typically imply a strict 

relationship between the first moment and higher order moments and do not 

disentangle the conditional mean and variance function. For example, under the 

exponential distribution, all higher order moments directly depend on the first 

moment. Consequently, the corollary as derived in Engle and Russell [9] using the 

EACD(1,1) model cannot not necessarily be extended to the more general 

ADCD(p,q) models with further proofs (see Pacurar [16]). Hence there is a certain 

inflexibility and lack of published rigorous diagnostics encountered with standard 
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ACD models. Explicit GARCH-based ACD models circumvent these limitations for 

obvious reasons. 

 

In addition, apart from being autocorrelated and having arch effects, duration 

innovations also exhibit long range dependence (long memory) and non-stationarity. 

Empirical studies based on the linear ACD model often reveal persistence in 

durations as the estimated coefficients on lagged variables add up nearly to one. 

Moreover, many financial duration series show a hyperbolic decay, i.e. significant 

autocorrelations up to long lags. This suggests that a better fit might be obtained by 

accounting for longer term dependence in durations. Indeed, the standard ACD 

model imposes an exponential decay pattern on the autocorrelation function typical 

for stationary and invertible ARMA processes. This may be completely inappropriate 

in the presence of long memory processes. Thus, whilst crucial for the ACD model 

and its extensions the “assumptions of iid innovations may be too strong and 

inappropriate for describing the behaviour of trade durations” (see Pacurar [16]). A 

further point of note is that whilst the Ljung-Box test statistic is assumed to have an 

asymptotic 2  distribution under the null hypothesis, no formal analysis exists that 

rigorously establishes this result in the context of the standard ACD models (see 

Pacurar [16]). 

 

 

In this paper we provide a slightly different approach to work originated by Engle and 

Russell [9]. We propose an alternative definition of durations, where positive 

durations depict “ask-durations” and negative durations depict “bid-durations”. This 
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approach enables the innovation error density to be symmetrical. The ensuring 

model is called the Autoregressive Conditional Directional Duration (ACDD) model. 

 

Bid and ask durations can be important individual conveyors of market 

microstructure information (see Bauwens and Giot [2], Easley and O’Hara [7]). 

Zhang et al [19] demonstrate that the decomposition of the spread into two 

components: the cost of buy exposure and the cost of sell exposure by taking into 

account the time series characteristics of trading at the bid and ask produces richer 

information about trading costs and price volatility. They test and find evidence that 

the effect of volumes traded on these components is not symmetric, which is an 

effect not captured in standard ACD models which do not distinguish between 

trading at the bid and ask. Our model framework would facilitate the greater 

exploration of these effects if warranted.  

 

A further consideration is that recently there have been considerable advances in 

algorithmic trading and in market surveillance techniques utilized by regulators. They 

both utilize the analysis of microstructure patterns of buying and selling sequences.  

If any patterns are found to be extractable, they will be invaluable for smart traders.  

Other  distinct microstructure patterns may reflect abnormal trading behaviour by 

market participants. These microstructure patterns can then be used  to empower 

market trading/surveillance agents in monitoring the markets 

 

The paper is organized as follows; we have set the scene in the introduction and 

briefly introduced GAS models which provide a broad conceptual framework for a 

wide variety of GARCH and ACD models. In section two we briefly discuss the 
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standard ACD model and introduce the concept of directional durations. Section 

three introduces the semi-parametric fractional autoregressive ACDD model, and the 

research method and data are discussed in sections four and five. The results are 

discussed in section six and section seven concludes the paper.  

 

2 The basic ACDD model 

The time series of arrival times or durations between successive occurrences of 

certain events associated with the trading process can be defined in a number of 

ways. Examples include the time between successive trades, the time until a price 

change occurs or until a pre-specified number of shares or level of turnover has 

been traded. We define directional durations as signed durations or times between 

successive trades. The signs of the durations are positive when the trade price is 

above  the mid-price and are negative when the trade price is below the mid-price. 

The sign of the duration when the trade-price is equal to the mid-price (13.25% of the 

data) is replaced with the directional sign of the previous directional duration. The 

mid-price is taken to be the average of the nearest bid and ask quotes. In doing so, 

we are able to differentiate between the arrival times of bid and ask-driven trades. 

 

The basic ACDD model relies on a linear parameterization of the conditional 

duration, i  which depends on p past absolute directional durations and q past 

conditional durations, defined as: 

 
1 1

p q

i j i j j i jj j
     

       (3) 

where 1( )i i i it t    are the directional durations and i = 1 for ask durations i.e. 

when the trade price is greater than the mid-price and i = -1 for bid durations i.e. 
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when the trade price is lower than the mid-price, with t being the trade times. To 

ensure positive conditional durations for all possible realisations, sufficient but not 

necessary conditions are 
1 1

0, 0, 0
p q

j j

j j

  
 

    . The main assumption behind 

ACDD model is that the standardised directional durations, 

 ,i
i

i





  (4) 

are independent and identically distributed (IID) with ( ) 0iE    and 
2( ) 1iE   2. 

Equation ( 3) is analogous the standard ACD model with the exception of  directional 

durations, 1( )i i i it t    as defined above. The significance of i j  in the ACDD 

model to is to ensure non-negative durations in the conditional duration process.  

 

A natural choice convenient for estimation could be any family of suitable 

symmetrical distributions. We adopt the generalized error distribution (GED) family 

proposed by Nelson [15] to capture the fat tails, if any, in the error terms. Let  

( , )f   be the density function for   with parameters  . If a random variable, i has 

a GED with mean zero and unit variance, the PDF of i is given by: 

 
( 1)/

1
exp ( ) /

2
( )

2 (1/ )

i

if



 

  


 

 
 
 

 
 (5) 

where 

 

1/2
2/2 (1/ )

(3 / )

 




 
  

 
 (6) 

                                                           
2 Note that the standard ACD model assumes the standardised durations are independent and identically 

distributed (IID) with   ( ) 1iE    and 
2( ) 2iE   . 
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and   is a positive parameter governing the thickness of the tail behaviour of the 

distribution. When  =2 the above PDF reduces to the standard normal PDF; when 

 <2, the density has thicker tails than the normal density; when  >2, the density 

has thinner tails than the normal density. When the tail thickness parameter  =1, the 

PDF of the GED reduces to the PDF of a double exponential distribution (The GED 

nests the Exponential pdf distribution in the basic ACD model of Engle and Russell 

[9]). 

 

Based on the above PDF, the log-likelihood function of ACDD model with GED 

errors can be constructed and maximum likelihood (ML) and quasi-maximum 

likelihood (QML) estimators for the ACDD parameters can be easily derived.. 

Furthermore, the redefinition of durations to bid- and ask-based durations enables us 

to fully adopt the full range of extant GARCH formulations i.e. meaning both the 

mean equation and the variance equation in the standard GARCH model and its 

various extensions can be utilised for duration modeling. Various types of GARCH 

models, such as EGARCH, TGARCH, PGARCH, etc. can be accessed for 

analogous ACDD modelling but will not be considered here as the motivation in this 

paper is to highlight and investigate the effects of embedding the bid-ask trading 

dynamics into  the duration processes against the standard ACD approach used in 

Engle and Russell [9]. Investigations into the relevance of the other GARCH types 

for ACD modeling (including nonlinear models) are left for future research. 

 

Under the proposed ACDD formulation, the directional durations are open to long 

range dependence (long memory) and non-stationarity, if any, in addition to 

exhibiting autocorrelation, arch and diurnal effects (see Table 2). To address these 
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additional stylised characteristics and as several ‘trend-generating’ mechanisms may 

be occur simultaneously, we introduce a SEMIFAR-based mean equation into the 

ACDD model. 

 

3 The SEMIFAR-ACDD model 

Semi-parametric fractional autoregressive (SEMIFAR) models (see Beran and Feng 

[3], [4]) have been introduced for modelling different components in the mean 

function of a financial time series simultaneously, such as nonparametric trends, 

stochastic nonstationarity, short- and long-range dependence as well as anti-

persistence. SEMIFAR includes ARIMA and FARIMA processes (see Hosking [14]; 

Granger and Joyeux [12]). 

 

Let ( 0.5,0 .5 ) d   be the fractional differencing parameter,  0,1m  be the integer 

differencing parameter,  L be the lag or backshift operator,  ( L )  be the lag 

polynomials in L with no common factors and all roots outside the unit circle and i

be white noise, then the SEMIFAR model can be defined as (see Feng, Beran and 

Yu [10]): 

 ( )(1 ) (1 ) ( )d m

i i iL L L y g          (7) 

where /i it n   

Similarly, in the SEMIFAR–ACDD model, the mean equation is defined as 

follows: 

 ( )(1 ) (1 ) ( )d m

i i iL L L g          (8) 

with the duration equation defined by: 
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1 1

p q

i j i j j i j

j j

      

 

     (9) 

where i  
is  then the SEMIFAR-filtered directional duration. To ensure positive 

conditional durations for all possible realizations, sufficient but not necessary 

conditions are that 
1 1

0, 0, 0
p q

j j

j j

  
 

    . The main assumption behind SEMIFAR-

ACDD model is that the standardised directional durations, 

 i
i

i





  (10) 

are independent and identically distributed (IID) with ( ) 0iE    and 
2( ) 1iE   . 

 

 

4 Methodology 

Based on the (Semi-parametric Fractional Autoregressive) SEMIFAR-ACDD model 

above and the asymptotic results for the SEMIFAR-GARCH formulation obtained by 

Feng, Beran and Yu [10], the following algorithm in S-PLUS is proposed for the 

practical implementation of the SEMIFAR–ACDD model: 

(a) Carry out data-driven SEMIFAR fitting using algorithm AlgB defined in Beran and 

Feng [3] on the square-root of directional durations to obtain ( )g  and ( )L ;  

(b) Calculate the residuals  i i ig    and invert i using ( )L into i , the estimates 

of i ; 

(c) Estimate the variance equation in ACDD model using S-PLUS/GARCH 

subroutine on the estimated residuals i of the SEMIFAR model from (b) above. 

 

The best SEMIFAR-ACDD model is then determined as follows: 
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(a) For p=1,pmax  and  q=1,qmax  estimate ACDD(p,q) and calculate it’s Bayesian 

Information Criterion i.e. BIC(p,q); 

(b) Choose the ACDD(p,q) model that minimizes the BIC. We obtain the best-fit 

ACDD model, using the BIC as defined by: 

 ( , ) 2 log(maximized likelihood) (log )( 2)BIC p q n p q      (11) 

With the trend function in the SEMIFAR–ACDD model, it is inconvenient to select the 

two equations ( 8 and 9) at the same time. As the estimated parameter vectors for 

the SEMIFAR and the ACDD models are asymptotically independent (see Feng, 

Beran and Yu [10]) we adopt a two-stage approach. The best-fit SEMIFAR(r) model 

is chosen from r=0,1,2 and the best fit ACDD(p,q) model selected from p=0,1,2 and 

q=0,1,2 , via the AIC/BIC/LL scores. 

 

5 The Data 

The dataset used in this paper is the IBM data used in the seminal paper titled 

"Autoregressive Conditional Duration: A New Model for Irregularly Spaced 

Transaction Data" by Engle and Russell [9] and was downloaded from 

http://weber.ucsd.edu/~mbacci/engle. This is to enable direct comparisons to be 

made with the standard ACD model using the same data. Engle and Russell [9] give 

the following account of the data set: “The data were abstracted from the Trades, 

Orders Reports, and Quotes (TORQ) data set constructed by Joel Hasbrouck and 

NYSE. The data set contains detailed information about each transaction occurring 

on the consolidated market during regular trading hours over a 3 month period 

beginning November 1, 1990 and ending January 31, 1991. In addition to information 

about bid and ask quote movements, the volume associated with the transactions, 

and the transaction prices, there is a time stamp, measured in seconds after 
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midnight, reflecting the time at which the transaction occurred”. A plot of the trade 

and quote transaction data is shown in Figure 1 below: 

 

Figure 1: IBM transaction data by Engle and Russell [9] 
Note: This is the original IBM data used by Engle and Russell [9].  It includes transactions from 
November 1990 through January 1991. The grey crosses depict the bid and ask quotes and the black line 
depicts the trade prices. 
 

A total of 60328 transactions were recorded for IBM over the 3 months of trading on 

the consolidated market from November 1990 through January 1991. As per the 

seminal paper, 2 days from the three months of quote and trade data were deleted. 

A halt occurred on 23rd November and a more than one hour opening delay occurred 

on 27th December. Following Engle and Russell [9] the first half hour of the trading 

day (i.e. trades and quotes before 10.00am) is omitted. This is to avoid modelling the 

opening of the market which is characterized by a call auction followed by heavy 
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trading activity as the dynamics are likely to be quite different over this call period. 

Furthermore, the call auction transactions are not recorded at the same time each 

morning. 

 

In addition, all trades and quotes after 4.00pm were also omitted. After omitting 

these two days and deleting those trade times less than 10am and greater the 4pm, 

51356 observations of the original 60328 transactions remained. Of the transactions 

occurring at non-unique trading times, nearly all of them corresponded with zero 

price movements. Engle and Russell [9] suggest that these transactions may reflect 

large orders that were broken up into smaller pieces. As it is not clear that each 

piece should be considered a separate transaction, the zero-second durations were 

considered to be a single transaction and were deleted from the data set. After all 

the adjustments to the data, 46052 observations were collated. 

 

In their seminal paper, Engle and Russell [9] reported 46091 final IBM observations. 

This is probably a typo (it should have been 46051) as their other reported summary 

statistics for the same dataset was identical with the mean duration of 28.38 

seconds, maximum duration of 561 seconds and standard deviation of 38.41 

seconds obtained from out final dataset. We ended up with 46052 observations, the 

extra 1 observation is due to the way we adjusted our durations. 
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Figure 2: Standard, Directional and Abs(Directional Durations) in seconds 
Note: As extracted from the original IBM data used by Engle and Russell [9].  It includes durations from 
November 1990 through January 1991. 

 

In Figure 2 it can be seen that the directional durations can either be positive or 

negative, whereas standard durations have strictly positive support. In addition, 

absolute values of the directional durations are equivalent to standard durations. The 

directional durations as defined enable symmetrically distributed innovation errors to 

be assumed. 
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Figure 3: ACF plots of Standard and Directional Durations 
 

It can be seen from Figure 3 that the autocorrelation properties of the standard 

duration and the absolute directional durations are identical. However, the ACF plot 

of the directional durations exhibit strong first-order AR(MA) behaviour. Herein the 

difference between standard and directional durations: the first order dependencies 

are fundamentally different. The inclusion of the SEMIFAR equation as the mean 

equation to ACDD model ensures that the first-order dependencies are addressed. 

However, the second order dependencies are identical. Consequently, the variance 

equation is analogous to that in the standard ACD model. Hence, the mean equation 

captures the additional information content embedded in directional durations. In this 

respect alone, the ACDD model can be deemed to be a more adequate model than 

the ACD for modelling (directional) durations data. 
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Descriptive statistics summarizing the characteristics of unadjusted standard, 

directional and absolute directional durations are shown in table 1 below: 

 min X1Q median X3Q max mean std skewness kurtosis 

SD 1 5 15 36 561 28.3845 38.4121 3.5467 23.6688 

DD -531 -12 3 18 561 3.0724 47.6629 0.0943 15.8655 

abs(DD) 1 5 15 36 561 28.3845 38.4121 3.5467 23.6688 
Table 1: Unadjusted Duration Descriptive Statistics 
Note: SD (Standard Durations), DD (Directional Durations) and abs(DD) (Absolute Directional Durations). 

 
It can be seen in Table 1 that using directional durations increases the range of 

durations, reduces their mean value, and reduces their skewness and kurtosis whilst 

adding to their standard deviation.  

 

6 Results 

The seasonal adjustment to the standard durations was carried out as done by Engle 

and Russell [9] using the same scatterplot smoothing SUPSMU-subroutine in S-

PLUS. A SEMIFAR filter (the mean equation) was then applied both to the square-

root adjusted standard durations  and the square-root adjusted directional 

deviations.3 This also enabled an equivalent SEMIFAR-ACD model to be compared 

against a similar SEMIFAR-ACDD model (as recommended by an anonymous 

referee). 

                                                           
3 The transformation was carried out so that the ACD model can be estimated with GARCH software as per 
Engle and Russell[9].  
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Figure 4: Square-Root Adjusted Durations and ACF plots 

Note: *~The adjusted standard durations have been further transformed by a random series of -1s and 
+1s as per Engle and Russell [9]. 

 

Figure 4 exhibits the adjusted square-root durations (sqrt(Adj)) for both the standard 

and directional durations. As mentioned earlier, the algorithm B (AlgB) in Beran and 

Feng [3] was used for estimating the SEMIFAR portion of the model. The trend was 

estimated by local linear regression using a kernel as the weight function. For the 

short memory effects, only an AR (auto-regressive) component was considered. The 

SEMIFAR model is chosen from r=0,1,2. The optimal lag length obtained for the 

autoregressive portion of the SEMIFAR-ACD model was r=0 whereas the optimal lag 

length obtained for the autoregressive portion of the SEMIFAR-ACDD model was 

r=2. The LB ( Ljung–Box test) -statistics, LM (Lagrange-Multiplier) -statistics, RS 

(Rescaled Range) -statistics and KPSS (Kwiatkowski–Phillips–Schmidt–Shin) -
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statistics are listed in Table 2 for the adjusted and square-root adjusted standard and 

directional durations (AdjSD, AdjDD, sqrt(AdjSD) and sqrt(AdjDD)) before and after 

applying the SEMIFAR(2) filter. 

 LB-stat LM-stat RS-stat KPSS-stat 

sqrt(AdjSD)* 45.3369 2828.9225 0.8276 0.0268 

p.value 0.4999 0.0000 >0.10 >0.10 

sqrt(AdjDD) 4345.0041 2828.9225 2.5465 0.549 

p.value 0.0000 0.0000 <0.01 <0.05 

SF-sqrt(AdjSD)* 68.7266 2825.3575 0.3398 0.0025 

p.value 0.0166 0.0000 >0.10 >0.10 

SF-sqrt(AdjDD) 32.831 2142.5727 0.9341 0.0315 

p.value 0.9279 0.0000 >0.10 >0.10 

Table 2: Adjusted and SEMIFAR-Adjusted Duration Statistics 

Note: *~The adjusted standard durations have been further transformed by a random series of -1s and 
+1s as per Engle and Russell [9]. LB ( Ljung–Box test), LM (Lagrange-Multiplier), RS (Rescaled Range), 
KPSS ((Kwiatkowski–Phillips–Schmidt–Shin). 

 

The square-root adjusted standard durations (sqrt(AdjSD)) contain significant arch 

effects. The square-root adjusted directional durations (sqrt(AdjDD)) contain 

significant serial correlations, long memory and arch effects as expected. The SF(0)-

sqrt(AdjSD) residual standard durations exhibit serial correlations and arch effects. 

However, all the SF(2)-sqrt(AdjDD) residual directional duration statistics are 

insignificant with the exception of significant arch effects, indicating the SEMIFAR 

filter has been efficient in capturing the serial correlation, long memory and non-

stationarity in the adjusted directional durations. Consequently, the GARCH equation 

need only address the arch effects. 

 

The ACD, SEMIFAR-ACD, ACDD and SEMIFAR-ACDD models are then fitted, 

diagnosed and compared. The model parameters for the mean and variance 

equations are listed in Table 3. The mean equation estimates are the same for both 

the ACD and ACDD models are null by construction. The ACD and ACDD variance 
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equation parameter estimates are of the same order and significant (not shown). The 

fractional differencing parameter d estimate of 0.1017 for the SF(2)-ACDD(1,1) 

model indicates persistence  in the bid-ask process is being captured by the mean 

equation.4 The GED parameter estimates are greater than the value of 2 (for a 

normal distribution) for all standardized model residuals models. However, the GED 

distribtution for the SF(2)-ACDD(1,1) standardised residuals is 2.18, indicating a 

closer fit to a normal distribution. 

 ACD(1,1) SF(0)-ACD(1,1) ACDD(1,1) SF(2)-ACDD(1,1) 

d NA -0.0095 NA 0.1017 

AR(1) NA NA NA 0.1135 

AR(2) NA NA NA 0.0287 

A0 0.0111 0.0106 0.0102 0.0105 

ARCH(1) 0.0635 0.0619 0.0617 0.0568 

GARCH(1) 0.9262 0.9275 0.9282 0.9337 

GED-v 2.9772 2.9336 2.9384 2.1808 

Table 3: ACD, SEMIFAR-ACD, ACDD and SEMIFAR-ACDD Parameters 

The descriptive and diagnostic statistics for the standardised residuals of various 

models  are displayed in Table 4. The Ljung-Box statistic for the ACD(1,1), SF(0)-

ACD(1,1) and SF(2)-ACDD(1,1) are all insignificant. However, the LB-statistic is 

4053.15 for the ACDD(1,1)  model, indicating high first-order dependency in the 

directional durations. This high dependency is subsequently completely addressed 

by the extended SEMIFAR(2)-ACDD(1,1)  model with some nominal but statistically 

significant arch effects still remaining.  

  

                                                           
4 The integer differencing parameter m is 0 for all SEMIFAR fits. 
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 mean stdev LB-stat LM-stat JB-stat 

ACD(1,1) -0.0023 1.0335 7.9554 20.6874 689.07 

p.value NA NA 0.7886 0.0552 0.0000 

SF(0)-ACD(1,1) 0 1.0332 9.3075 20.4316 688.4707 

p.value NA NA 0.6765 0.0593 0.0000 

ACDD(1,1) 0.1045 1.0282 4053.1534 20.8674 773.3262 

p.value NA NA 0.0000 0.0524 0.0000 

SF(2)-ACDD(1,1) 0 0.9937 6.3267 26.5903 251.478 

p.value NA NA 0.8987 0.0088 0.0000 

Table 4: ACD/ACDD and SF-ACD/ACDD Statistics on Std Residuals 

To remove the remaining arch effects, a best-fit SEMIFAR(2)-ACDD model is 

selected from p=0,1,2 and q=0,1,2 by means of BIC. The best fitted ACDD model is 

found to be the SEMIFAR(2)-ACDD(2,1) as depicted by the lowest AIC/BIC/LL 

values in Table 5. 

 ACDD01 ACDD02 ACDD10 ACDD11 ACDD12 ACDD20 ACDD21 ACDD22 

AIC 130108 130322 129618 127419 127414 129312 127405 129113 

BIC 130134 130357 129644 127454 127457 129347 127449 129166 

LL -65051 -65157 -64806 -63706 -63702 -64652 -63698 -64551 

Table 5: AIC/BIC/LL-values for SEMIFAR(2)-ACDD Models 

Table 6 summarises the parameters and diagnostics for variance equation of the 

SEMIFAR(2)-ACDD(2,1) model as selected. Though the JB-statistic still rejects 

normality, the LM-statistic is no longer significant indicating insignificant arch effects 

in the residuals. 

 A0 ARCH(1) ARCH(2) GARCH(1) LB-stat LM-stat JB-stat 

SF(2)-ACDD(2,1) 0.0093 0.0796 -0.0256 0.9376 7.1446 18.5463 256.3364 

p.value 0.0000 0.0000 0.0000 0.0000 0.8479 0.1001 0.0000 

Table 6: SEMIFAR(2)-ACDD(2,1) parameters 

In Figure 5, the black lines  depict the conditional durations from the SEMIFAR-

ACDD and SEMIFAR-ACDD models, whereas the  grey crosses  depict the 

conditional durations from the ACD and ACDD models in both panels. The plots are 

very similar but not identical, indicating that the alternative ACD models i.e. the 

ACDD and SEMIFAR-ACDD models are not only equivalent but are more adequate 
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models of the signed duration process as supported by the lower residual statistics 

(as listed in Tables 4, 5 and 6).   

Figure 5: Conditional Durations Plots (ACD, ACDD, SF-ACD and SF-ACDD)  

To make highlight the subtle differences in the conditional durations as captured by 

the various models, Figure 6 provides two scatter plot, one for the ACD/ACDD 

conditional durations and the other for the SEMIFAR-ACD/ACDD conditional 

durations. As can be seen in Figure 6, the SEMIFAR models fit very different 

conditional durations which must be the effects of dependencies in the mean series 

when the bid-ask dynamics have been embedded.  
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Figure 6. Scatter plots of the conditional durations. 

Although there are not much differences between the conditional durations of the 

ACD and ACDD models, there are significant differences between the SEMIFAR 

versions of the same. The SF(2)-ACDD(1,1) model tends to give lower conditional 

durations more often that the corresponding ACD(1,1) models. One can see this 

tendency exhibited in panel 2 of Figure 5, where the black lines (depicting SF(2)-

ACDD(1,1) conditional durations) are generally bounded by the grey crosses 

(depicting SF(0)-ACD(1,1) conditional durations). 

 

7 Conclusions 

This paper modifies the standard ACD model into a SEMIFAR–ACDD model so that 

non-stationarity and long memory in durations data can be addressed and captured 
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using a more parsimonious parameterisation. Asymptotic results on SEMIFAR-

GARCH models as reported by Feng, Beran and Yu [10] are extended to the 

SEMIFAR-ACDD model. The important property that the estimates of the SEMIFAR 

and ACDD parameter vectors are independent of each other, allows us to apply the 

data driven SEMIFAR algorithms to estimate the trend and the SEMIFAR 

parameters in the SEMIFAR–ACDD model. The ACDD parameters from the 

approximated ACDD innovations are obtained by inverting the SEMIFAR residuals. 

 

If the fitted ACDD models are adequate, then the standardised residual innovations 

should behave as an IID sequence of random variables with the assumed 

distribution. In particular, if the fitted model is adequate, both the series  i and 

 2

i   should have no serial correlations. The AIC/BIC/LL selected SEMIFAR(2)-

ACDD(2,1) model resulted in residuals that had not only small but insignificant 

values of  Ljung-Box and Lagrange-Multiplier statistics indicating strong model 

adequacy. The shape parameter of the GED distribution for the standardised 

residuals was 2.18 with a small Jarque-Bera statistic of 251.4 in addition to having 

mean and standard deviation estimates as assumed (i.e. 0.0 and 0.9937 against the 

model assumptions of ( ) 0iE    and 
2( ) 1iE   ).

 
 

 

The results indicate that the proposed SEMIFAR-ACDD representation can be used 

to capture both first-order and second-order dependencies in signed durations data. 

Further possible extensions to the ACDD model include leverage effects and the full 

range of GARCH-type extensions that are not readily available to the standard ACD 

model. 
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