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Abstract

The phenomenon of the occurrence of rare yet extreme events, “Black Swans” in Taleb’s
terminology, seems to be more apparent in financial markets around the globe. This
means there is not only a need to design proper risk modelling techniques which can
predict the probability of risky events in normal market conditions but also a requirement
for tools which can assess the probabilities of rare financial events; like the recent Global
Financial Crisis (2007-2008). An obvious candidate, when dealing with extreme financial
events and the quantification of extreme market risk is Extreme Value Theory (EVT).
This proves to be a natural statistical modelling technique of relevance. Extreme Value
Theory provides well established statistical models for the computation of extreme risk
measures like the Return Level, Value at Risk and Expected Shortfall. In this paper we
apply Univariate Extreme Value Theory to model extreme market risk for the ASX-All
Ordinaries (Australian) index and the S&P-500 (USA) Index. We demonstrate that EVT
can be successfully applied to financial market return series for predicting static VaR,
CVaR or Expected Shortfall (ES) and expected Return Level and also daily VaR using
a GARCH(1,1) and EVT based dynamic approach.

Keywords: Risk Modelling, Value at Risk, Expected Shortfall, Extreme Value Theory,
GARCH

1. Introduction

One of the major challenges in modelling VaR is the distributional assumption made
for the return data series of the asset or portfolio, which is taken to be normal in most of
the quantification approaches. The assumption of normality is not valid when the data
series have heavy tails, which are characterised by extreme events left outside the bounds
of a normal distribution when modelling VaR. The problem of the normality assumption
of the return series, can be addressed by using the distribution free assumption of quantile
modelling statistics, and tools such as quantile regression [31] or by applying extreme
distribution based methods such as Extreme Value Theory (EVT).

With growing turbulence in the financial markets worldwide, evaluating the proba-
bility of extreme events like the GFC, has become an important issue in financial risk
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management. Quantification of the extreme losses in a financial market is important in
current market conditions. EVT provides a comprehensive theoretical base on which sta-
tistical models describing extreme scenarios can be formed. The distinguishing feature of
EVT is that it provides quantification of the stochastic behavior of a process at unusually
large or small levels. Specifically, EVT usually requires estimation of the probability of
events that are more extreme than any other that has been previously observed.

EVT, refers to the branch of statistics which deals with the extreme deviations from
the mean of a probability distribution. EVT assesses the type of limiting probability
distributions for the processes. In broad terms, EVT has two substantial ways of obtain-
ing results or principal models: viz. the Block Maxima model (BMM) and Peak Over
Threshold model (POT). Through the block maxima method, the asymptotic distribu-
tion of a series of maxima (minima) is modelled and the distribution of the standardized
maximum is shown to follow extreme value distributions of Gumbel, Fréchet or Weibull
distributions. The generalized extreme value distribution (GEV) is a standard form of
these three distributions, and hence the series is shown to converge to GEV. To analyse
extreme market events, we are not always interested in maxima or minima of observa-
tions, but also in the behaviour of a large exceedance over a given threshold. The Peak
over threshold method models a distribution of excess over a given threshold. EVT shows
that the limiting distribution of exceedance is a generalized Pareto distribution or GPD
(see [7, 8, 9, 18 and 20]).

EVT techniques are widely used in areas of hydrology (see [10, 54, 30]), weather and
environment [45, 46, 50, 53 and 57]). EVT is also a well known technique in many fields
of applied sciences including engineering and insurance ([40, 14, 47 and 21]). Numerous
research studies surfaced recently which analyse the extremes in the financial markets due
to currency crises, stock market turmoils and credit defaults. The behaviour of financial
series tail distributions has, among others, been discussed in Mancini and Trojani [37],
Onour [43], Gilli and Këllezi [20], Koedijk et al. [31], Dacorogna et al. [11], Loretan
and Phillips [35], Longin [34], Daniels-son and de Vries [12], Kuan and Webber [33],
Straetmans [52], McNeil [39], Jondeau and Rockinger [26], Rootzen and Kluppclbcrg
[48], Neftci [42], McNeil [38], McNeil and Frey [40] and Gençay et al. [19]. Diebold et al.
[13] discuss the potential of EVT in risk management.

Despite the promise of useful implementation of EVT in financial market analysis, it
has only recently gained the attention of researchers in Australia. Chan and Gray [5] ,
Thomas et al. [55] and Jeyasreedharan et al. [25] are amongst the few studies to have
used the technique. The lack of implementation of EVT methods on Australian markets
act as our motivation to test it further on Australian market. This particular research
paper also targets the United States market to analyse the recent GFC and the crash of
1987 as natural comparators.

In this paper we model and estimate the static next day VaR, ES and different return
period Risk Levels for the ASX-All Ordinaries and the S&P-500 stock exchange index
series of daily log-return data using EVT. We follow the method of Gilli and Këllezi [20]
to model Return level, VaR and ES using their MATLAB code to generate the results and
also to test the models for different block lengths and threshold values. We also model
these extreme risk measurements in a dynamic two stage extreme value process with a
GARCH (1,1) model (McNeil and Frey [42]), to forecast daily VaR and ES with historical
data in a moving window. We also add return period calculations to our BMM analysis
and pick the two major financial crashes of 1987 and 2008 from our historical data and
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forecast the return period for the same, which is helpful in assessing the likelihood of
these crashes in the future.

The rest of the paper is designed as follows; in section-2 we give more details about
EVT and the associated risk measures, in section-3 we outline the dynamic-EVT method
for VaR and ES estimation. In Section-4 we discuss our empirical design, and provide
a data description together with our research design and methodology. We discuss the
results in section-5 and conclude in section-6.

2. Extreme Value Theory and Extreme Risk Modelling

EVT provides simple parametric models to capture the extreme tails of a distribution
and to forecast risk. Mainly there are two broad methods of applying EVT: the first of
which is based on the extreme value distributions of the Gumbel, Fréchet or Weibull
distributions which are generalized as the Generalized extreme value distribution (GEV)
and known as the Block Maxima (Minima) (BMM) approach, whilst the second is based
on the Generalized Pareto Distribution (GPD) and is known as the peak over threshold
(POT) approach. The BMM models are the most traditional of the two, and the BMM
approach fits a block of maxima of minima (extreme events) in a data series of inde-
pendent and identically distributed observations (iid) to GEV using different statistical
methods; the most common of which is via Maximum Likelihood Estimation (MLE).
POT is considered more efficient in modelling limited data (Gilli and Këllezi [20], Mc-
Neil, Frey and Embrecht [41]) as it fits the exceedances over a given threshold in a a
data set to GPD and hence is not as dependent on the requirement for large data sets
as BMM. Our discussion of EVT in this paper is adopted from Embrechts, Klüppelberg
& Mikosch [15], Coles [7], McNeil and Frey [40], Gilli and Këllezi [20], McNeil, Frey &
Embrechts [41], Franke, Härdle and Hafner [18].

2.1. The Generalized Extreme Value Distribution (GEV) & Block Maxima Method
Consider Xn as a series of random iid variables X1, . . . , Xn with cumulative distri-

bution function (cdf) F (x) with a stochastic maximum Mn = max(X1, . . . , Xn). When
dealing with financial risk, Xt = −rt i.e., the negative return at day t. The cdf of Mn is
given by ([18], [41], [15])

P (Mn ≤ x) = P (X1 ≤ x, . . . ,Xn ≤ x) =

n∏
t=1

P (Xt ≤ x) = Fn(x). (1)

Considering only unbounded random variables Xt i.e. F (x) < 1 ∀x < ∞, it holds
that Fn(x) → 0∀x, if n → ∞ and hence Mn

P→ ∞. Mn has to be standardised to
achieve a non-degenerate behaviour limit.

Theorem 1. (Fisher and Tippett, 1928; Gnedenko, 1943).If Xn is a series of
i.i.d. random variables. If for a non-degenerate distribution function H, there exist a
constant cn > 0 and dn ∈ R , then

Mn − dn
cn

d→ H, (2)
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H here belongs to a GEV distribution.

GEV is generalised representation of the following three distributions:
Fréchet:

Φα(x) =

0, x ≤ 0

e−x
−α
, x > 0

α > 0 (3)

Weibull:

Ψα(x) =

e−(−x)
α

, x ≤ 0

1, x > 0
α > 0 (4)

Gumbell:
Λ(x) = e−e

−x
, x ∈ R. (5)

The distribution function (df) of the standard GEV [24, 56] is given by

Hξ(x) =

e−(1+ξx)
−1/ξ

if ξ 6= 0

e−e
−x
, if ξ = 0

(6)

Here x is such that 1 + ξx > 0. We obtain the three parameter family by defining
Hξ,µ,σ(x) := Hξ((x−µ)/σ) for a location parameter µ ∈ R and a scale parameter σ > 0.
With this generalization, ξ is known as the shape parameter of the GEV distribution and
Hξ gives the type of distribution. ξ > 0 for Fréchet distribution, ξ < 0 for the Weibull
distribution and ξ = 0 for the Gumbel distribution. Figure- 1.1 gives the probability
density functions of these three distributions.
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(a) Fréchet Distribution (b) Weibull Distribution (c) Gumbell Distribution

Figure 1: Probability density functions

2.1.1. The Block Maxima Method (BMM)

In Block Maxima Method [41], suppose we have a data series typically having series of
maxima for a fixed block size n from an underlying distribution F , which is supposed to
lie in domain of attraction of a GEV Hξ for some ξ. If the data is series of iid variables, it
can be implied that the true distribution of n−block maximumMn can be approximated
for large enough n by a GEV, Hξ,µ,σ.

BMM uses this idea to fit the GEV distribution Hξ,µ,σ to a data series containing
block maximum for an equal period n. The parameters for the GEV fit (ξ̂,µ̂,σ̂) are es-
timated by maximum likelihood estimation (MLE), the confidence interval estimates for
the parameters are estimated by profile likelihood estimation [4]. BMM originated in hy-
drology for extreme modelling e.g., annual maxima of rain fall, yet it can be analogously
applied to financial daily return data by dividing the datasets into yearly, semester, quar-
terly or monthly blocks. The daily maximum in these blocks can be analyzed using BMM
as we will see later in the empirical study of the S&P-500 and the ASX-All Ordinaries
stock indices.

2.1.2. Return Level

The Generalized Extreme Value model fitted to the data of block maxima (minima)
can be used to analyse extreme losses. This can be approached in two ways; in the
first approach, known as return level estimation, we can define the return period of the
occurrence of the extreme event and predict its magnitude and in the second, the return
period estimation approach, we can calculate the return period for a given return level.
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If H is the distribution of maxima (minima) observed over period of time (non over-
lapping and equal periods), the return level is given as

Rkn = H−1ξ,µ,σ

(
1− 1

k

)
(7)

which is the return level expected to be exceeded in one out of k periods (k = 1/p)

of length n. This is a conservative measure of severe loss of a portfolio or an asset in
financial risk.

2.2. Generalized Pareto Distribution & Peak Over Threshold (POT)

There are two major results of EVT, first Block Maxima Model (Section-2.1) which
fits a series of block maximas to the GEV distribution and the second based on thresh-
old exceedances known as Peak Over Threshold which fits the excess distribution to the
Generalized Pareto distribution (GPD). The POT method uses available data more ef-
ficiently which is an obvious advantages over BMM, in POT we use all the data which
exceeds a particular threshold level while in BMM only the maximum from a block length
is retained for distribution estimation.

Theorem 2. (Pickands (1975), Balkema and de Haan (1974)). For a large class
of underlying distributions F, the excess distribution function Fu can be approximated by
GPD for an increasing threshold u.

Fu(y) ≈ Gξ,σ(y), u→∞

Gξ,σ in theorem-2 is the Generalized Pareto Distribution (GPD) which is given by

Gξ,σ(y) =

(1 + ξ
σy)−1/ξ if ξ 6= 0

1− e−y/σ if ξ = 0
(8)

for y ∈ [0, (xF − u)] if ξ ≥ 0 and y ∈ [0,−σξ ] if ξ < 0. Here ξ is the shape parameter
and σ is the scale parameter for GPD.

Figure-2 gives the density plots for different values of ξ, the shape parameter in GPD.
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Figure 2: Density plots for GPD for σ = 1

Definition 3. (Excess Distribution). For a random variable X with df F , the excess
distribution over a threshold u is given by

Fu(y) = P (X − u ≤ y|X > u) =
F (y + u)− F (u)

1− F (u)
=
F (x)− F (u)

1− F (u)
, (9)

for 0 < y < xF − u where xF ≤ ∞ is the right endpoint of F and y = x − u. Fu is
the conditional excess distribution function.

2.2.1. VaR and Expected Shortfall

If there is an extreme distribution F with right endpoint xF , we can assume that for
some threshold u, Fu(x) = Gξ,σ(x) for 0 ≤ x < xF − u and ξ ∈ R and σ > 0. For x ≥ u,
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F̄ (x) = P (X > u)P (X > x|X > u)

= F̄ (u)P (X − u > x− u|X > u)

= F̄ (u)F̄u(x− u)

= F̄ (u)

(
1 + ξ

x− u
σ

)−1/ξ
(10)

given F (u), this gives a formula for tail probabilities. The inverse of (2.10) gives the
high quantile of the distribution or VaR. For α ≥ F (u), VaR is given by

V aRα = qα(F ) = u+
σ

ξ

((
1− α
F̄ (u)

)−ξ
− 1

)
(11)

For ξ < 1 the ES is given by

ESα =
1

1− α

ˆ 1

α

qx(F )dx =
V aRα
1− ξ

+
σ − ξu
1− ξ

(12)

Analytical expressions for VaR and ES can also be defined as a function of estimated
GPD parameters. Using (9)

F (x) = (1− F (u))Fu(y) + F (u),

if n is the total observations and Nu the number of observations above u and we
replace Fu by the GPD and F (u) by (n−Nu)/n, we get an estimator for tail probabilities
(Smith, [51])

F̂ (x) = 1− Nu
n

(
1 +

ξ̂

σ̂
(x− u)

)−1/ξ̂
. (13)

The inverse of (13) with a probability p gives the VaR

V̂ aRp = u+
σ̂

ξ̂

((
n

Nu
p

)−ξ̂
− 1

)
(14)

Using (12) the ES is given by

ÊSp =
V̂ aRp

1− ξ̂
+
σ̂ − ξ̂u
1− ξ̂

(15)

In POT method GPD is fitted to the excess distribution (value above threshold a u)
by MLE and the confidence interval estimates are calculated by profile likelihood and
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then the unconditional or static estimates for VaR and ES are calculated.

3. EVT VaR and ES-A Dynamic Approach

In VaR and ES calculations using POT when EVT is applied directly to raw return
data assuming the distribution to be stationary or unconditional, the EVT model can
be termed a static model [40]. EVT can also be used in a dynamic model, where the
conditional distribution of F is taken into account and the volatility of returns is captured.
The dynamic model uses an ARCH/GARCH type process along with the POT to model
VaR and ES which reacts to fluctuations in market and hence captures current risk [40],
we discuss this dynamic method in this section.

McNeil and Frey [40], proposed a dynamic VaR forecasting method based using EVT,
their method makes use of GARCH modelling to model the current market volatility
background which is further fed into VaR estimates obtained from the POT model fitted
to residuals of a GARCH model. By use of GARCH models to forecast the estimates of
conditional volatility the model provides dynamic one day ahead forecasts for VaR and
ES for the financial time series.

Let Rt the return at time t be defined by the following stochastic volatility (SV)
model

Rt = µt + σtZt, (16)

where µt is the expected return on day t and σt is the volatility and Zt gives the
noise variable with a distribution FZ(z) (commonly assumed to be standard normal).
We assume that Rt is a stationary process.

The most widely used suitable models are drawn from the ARCH/GARCH family.
An autoregressive GARCH(1,1) process is given by

σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1, (17)

where ε = Rt−1 − µt−1, µt = λRt−1, α0, α1, β > 0, β + α1 < 1 and |λ| < 1.
In contrast to static risk modelling using EVT, where we model the unconditional

distribution FX(x) and are interested in loss for k days in general, the dynamic approach
models the conditional return distribution conditioned on the historical data to forecast
the loss over the next k ≥ 1 days. If we follow the GARCH(1,1) model the one day ahead
forecast of VaR and ES are calculated as:
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V aRq = µt+1 + σt+1V aR(Zq)

ESq = µt+1 + σt+1ES(Zq) (18)

With the assumption that FZ(z) is a known standard distribution, typically a normal
distribution Zq can be easily calculated. The EVT approach [40], instead of assuming
FZ(z) to be normal applies the POT estimation procedure to this distribution of residuals.

For a return series at the close of day t with time window of last n returns (Rt−n+1, . . . , Rt)

the method is implemented in following two steps.

1. A GARCH(1,1) model is fitted to the historical data by pseudo maximum likeli-
hood estimation (PML) also known as Quasi-maximum likelihood estimation. The
GARCH (1,1) model in this step gives the residuals for step-2 and also 1 day ahead
predictions of µt+1and σt+1.

2. EVT (POT method) is applied to the residuals extracted from step-1 for a constant
choice of threshold u to estimate VaR(Z)q and ES(Z)q to calculate the risk measures
using equation-18.

The parameters of the GARCH model are estimated by the pseudo-maximum likelihood
(PML) method. The likelihood of GARCH with a normality assumption is maximised to
obtain parameter estimates θ̂ = (λ̂, α̂0, α̂1, β̂)T . Although this means fitting the model
with a normality assumption, which is not always true for financial return data, PML
usually generates fair estimates which are consistent and asymptotically normal [22]. The
POT method in step-2 is fitted using MLE.

We will implement this method to forecast one day ahead VaR for ASX-All ordinar-
ies and S&P-500 indices and will compare the results with standard GARCH(1,1) and
RiskMetricsTM based estimates later in the empirical exercise. The results will be back-
tested by application of the binomial method based on the number of daily violations
above VaR.

4. Data & Research Methodology

4.1. Description of Data

The objective here is to implement various EVT based risk modelling methods to
model extreme market risk. The focus of this empirical study is to model the market
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risk of the ASX-All Ordinaries stock index’s daily log return data, this particular index
is chosen as the historical data available for this index dates back to 1973 and we require
large data sets for implementing EVT based methods, particularly BMM. We also model
market risk using EVT for the S&P-500 index for the same data period.

The data period used here is from 03/01/1973-03/12/2010, which gives us approxi-
mately 38 year blocks and 155 quarterly blocks for BMM calculations. Also this data
period includes the crash of 1987 and recent GFC (2007-2008) for both stock markets.
The data is downloaded from Reuters Datastream (DS) and the series used are DS cal-
culated series for both the indices in US Dollars. We use DS calculated return series for
the indices as it provides daily returns for a longer period than the original.

Table-1 gives the summary statistics for the daily logarithmic returns in US Dollars
for our two datasets, it can be noted that the ASX-All Ordinaries is slightly more volatile
than S&P-500 for the given period.

ASX-All Ordinaries S&P-500

Min. -30.15918 -21.22849

Median 0.0279 0.0143

Mean 0.02523 0.02571

Max. 8.34088 10.90037

Std. Dev. 1.369605 1.092627

1% Quantile -3.554387 -2.872808

5% Quantile -2.002421 -1.614634

95% Quantile 1.98204 1.627681

99% Quantile 3.349155 2.902302

No. Of observations 9893 9893

Table 1: Summary Statistics for Data

4.2. Research Design & Methodology

We implement BMM, POT and a two step dynamic POT method to model extreme
market risk for ASX-All Ordinaries and S&P-500 daily log return data. The methodology
is outlined as follows:

1. First we quantify the Return level for various return periods and yearly Return Pe-
riods for the two major financial crashes of 1987 and 2008 using the BMM approach.
We implement BMM on the data in yearly and quarterly block sizes. We generate
both point and 95% confidence interval values for the estimated parameters and
risk measures.

2. After BMM we use the same daily return dataset to quantify static VaR and ES for
both the indices using POT method. We model POT for two different threshold (u)
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values; the lower 5% and 10% quantile of the distribution. The threshold can also
be selected by use of a sample mean excess plot and we will show that the quantile
threshold values in fact satisfies the sample mean excess plot criteria. Again point
and interval estimates for both the indices are generated.

3. Finally we implement the third method of dynamic EVT to model daily VaR for
both the indices by use of the last 1000 log returns (approximately 4 years) of data
in a daily moving window, we use last 10 years (approximately) data from January-
2000 to December-2010. The VaR estimates generated from the two step method
will also be compared with normal GARCH(1,1) and RiskMetricsTM method by
backtesting.

For the calculations we will use the MATLAB code of Gilli and Këllezi [20] which is freely
available from their website and self-coded R routines, both MATLAB and R codes use
MLE for parameter estimation of EVT.

The results are discussed in the next section.

5. Discussion of the Results

5.1. The Block Maxima Method

When fitting block maxima to GEV we extract the n−period maximums from a
sample, which is then fitted to the GEV distribution, the fit is finally used to compute
point and interval estimates of return levels and return periods. We generate results for
both the left and right tails of the return distribution, in financial applications to model
the left tail of the distribution we change the signs of the return data such that r̂t = −rt,
for the right tail data is used as it is.

The main implementation of BMM model in this paper use two block lengths, yearly
and quarterly, we do not quantify the model using a monthly block length as the quantile-
quantile (Q-Q) plot of the block of maxima and the theoretical GEV shows that the
monthly block length does not necessarily follow GEV for left tail of our return data
series. Figure-3 gives four different plots; a time series plot of block maxima, a plot of
GEV residual density, a scatterplot of residuals and Q-Q plot of residuals, for ASX-All
Ordinaries left tail data. The Q-Q plot from the figures clearly illustrates that the block
size of a month is not a good fit to GEV distribution and hence we do not proceed with
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Figure 3: GEV Fit Plots for ASX-All Ordinaries-Monthly blocks

the monthly block length any further.

5.1.1. Yearly BMM

The return data is divided in 33 yearly overlapping sub-samples as the number of
trading days in our yearly samples are not equal the sample blocks are not of equal size.
The block maxima data consists of the maximum return for each block, which is used
to estimate GEV. The yearly block choice is good for the purpose of avoiding seasonal
effects in financial data. Figure-4 plots the yearly maxima for the left and right tails of
the ASX-All Ordinaries return data. The block maxima data is fitted by MLE to get the
point estimates and the interval estimates are obtained by profile log likelihood. As our
focus in this study is Australian market, we will give graphical results only for ASX-All
Ordinaries.

Figure 4: Yearly minima and maxima of the daily returns of the ASX-All Ordinaries
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Figure-5 (a) and (b) give the fitted GEV distribution with sample distribution of
ASX-All Ordinaries for minima and maxima, with these figures it is safe to say that the
estimated models fit the data.

(a) Minima (b) Maxima

Figure 5: Fitted GEV with sample distribution-ASX All Ordinaries

The ten year return level R10 for the minima of ASX-All ordinaries is shown in
figure-6(a) and for the maxima in figure-6(b), the return level is plotted against profile
log likelihood in the return level graphs.

(a) Minima (b) Maxima

Figure 6: R10-ASX-All Ordinaries

Table-2 gives the point and interval estimates (95% confidence intervals) for the pa-
rameters of both left tails and rights tail along with ten year return levels. The point
estimates of ξ for both the tail of both the indices indicate the distribution of minima
(left tail) and maxima (right rail) follow the Fréchet distribution family. Return level
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shows that the ASX-All Ordinaries is more prone to losses (left tail) on average in a year
than S&P-500, but if we look at the right tail return levels for ten years the difference
is not much. According to point estimates of R10 the ASX-All Ordinaries is prone to
exceed a negative return of 9.32 at least in one year on average in ten years, whereas
this value for S&P-500 is 7.66. For right tails (positive returns) these values are 6.88 and
6.119 for ASX-All Ordinaries and S&P-500 respectively.

ASX-All Ordinaries S&P-500

Lower Bound Point Estimate Upper Bound Lower Bound Point Estimate Upper Bound

Left Tail

ξ̂ 0.207 0.522 0.773 0.188 0.616 0.994

σ̂ 1.06 1.305 1.824 0.849 1.064 1.511

R10 6.974 9.32 15.735 5.338 7.666 17.261

Right Tail

ξ̂ -0.051 0.3 0.664 0.031 0.39 0.803

σ̂ 0.829 1.084 1.566 0.762 0.989 1.425

R10 5.608 6.88 10.35 4.736 6.119 10.705

Table 2: Point and interval estimates for yearly BMM

ASX-All Ordinaries Return Period (Years)

Return Level Lower Bound Point Estimate Upper Bound

-30.15 (1987) 14483.96 109.3548 22.96043

-15.4 (2008) 697.7636 28.25613 9.654452

S&P-500 Return Period (Years)

Return Level Lower Bound Point Estimate Upper Bound

-21.23 (1987) 330487.2 55.78519 11.65571

-9.4 (2008) 1458.767 14.20647 5.393755

Table 3: Return Periods for different return levels (Crash of 1987 and 2008)

In table-3 we give the point and interval estimates for the Return periods of the two
financial crashes of 1987 and 2008. The point estimates for ASX-All Ordinaries show
that a crash similar to the crash of 1987 is likely to occur in one out of 109.35 years and
loss that occurred during the GFC can repeat itself in 28.25 years. For S&P-500 the
crash of 1987 is likely to occur in one out of 55.78 years and S&P-500 can loose as much
as the loss of GFC in one out of 14.2 years.

5.1.2. Quarterly BMM

We now take a smaller block size to evaluate BMM, here we take the maximum from
quarter year blocks from our two datasets to finally fit them to GEV. Figure-7 gives the
four graphs showing block maxima value plot, GEV residual histogram, scatterplot of
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residuals and Q-Q plot of residuals for the GEV fit for left tail of ASX-All Ordinaries,
with the plot it is safe to assume that the limiting distribution of quarterly maxima for
the indices return follow the GEV distribution.

Figure 7: GEV fit plots for ASX-All Ordinaries (Left Tail)-Quarterly BMM

Figure-8 gives the return level plot for left and right tail of the ASX-All Ordinaries,
here the return levels are plotted against return periods.
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Figure 8: Return Level Plots-ASX-All Ordinaries (Left & Right Tails)

Table-4 gives the point and interval estimates of the parameters for both left and
right tail GEV fits. Finally table-5 gives the return levels (point and interval estimates)
for 4, 40 and 400 quarter return periods for both right and left tails of our two datasets.

ASX-All Ordinaries S&P-500

Lower Bound Point Estimate Upper Bound Lower Bound Point Estimate Upper Bound

Left Tail

ξ̂ 0.1764881 0.2881795 0.3999079 0.2310931 0.3606471 0.49021

σ̂ 0.8219721 0.9621759 1.10213 0.5827561 0.6904352 0.7979965

Right Tail

ξ̂ 0.1736475 0.3265962 0.4799529 0.1031833 0.2413213 0.3827131

σ̂ 0.6261321 0.7432137 0.8606552 0.6229363 0.7316748 0.8402358

Table 4: Point and interval estimates for quarterly BMM
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ASX-All Ordinaries Return Level S&P-500 Return Level

Period Lower Bound Point Estimate Upper Bound Lower Bound Point Estimate Upper Bound

Left Tail

4 3.66 3.93 4.26 2.68 2.90 3.16

40 7.49 8.78 10.84 5.90 7.10 9.10

400 13.42 17.92 26.49 11.46 16.50 25.67

Right Tail

4 3.36 3.58 3.85 2.77 2.97 3.21

40 6.50 7.72 9.90 5.34 6.24 7.80

400 11.25 16.26 20.08 8.69 11.74 17.62

Table 5: Return Levels for Quarterly-BMM

The quarterly results also show that the distribution of positive and negative maxima
for the two indices follow the Fréchet family of distributions.The 40 period return levels
for both the indices are also close to the 10 year return level calculated from yearly BMM.

5.2. The POT Method

The POT method involves the selection of a threshold u, the exceedance above which
are then fitted to the GPD function after which point and interval estimates for VaR and
ES are calculated. The threshold can be selected by using a mean excess plot which is
plotted by using GPD mean excess function. If we have a positive-valued extreme data
(loss data) X1, . . . , Xn, the estimator e(u) is given by

en(v) =

∑n
i=1(Xi − v)I{Xi>v}∑n

i=1 I{Xi>v}
(19)

where u ≤ v <∞ and I{Xi>v} are the values exceeding threshold v. This function is
explored by mean excess plot
{(Xi,n, en(Xi,n)) : 2 ≤ i ≤ n}
Xi,n is the i-th order statistic. The plot shows linearity in a region where above

the threshold v the data supports GPD model. In ideal situations the linearity can be
interpreted as

• Upward linear trend indicates a positive shape parameter (ξ) for the GPD.

• Horizontal linear trend indicates a GPD with ξ ≈ 0.

• Linear downward trend can be interpreted as GPD with negative ξ.

Figure-9 gives a mean excess plot for ASX-All ordinaries daily log return data with a
threshold u=2.01 and an upward linear trend and hence a positive ξ.
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Figure 9: Mean Excess Plot ASX-All Ordinaries

The first step, i.e. the selection of u is critical, u should be high enough to satisfy the
condition of GPD but not too high to decrease the number of observations significantly.
Here we use a particular lower quantile of the daily return data as the threshold which can
be shown agreeing to the mean excess plot method of selecting u. In figure-9, u = 2.01 is
the 95% quantile of negative log return data of ASX-All Ordinaries and it well lies on the
acceptable linear region on the plot.We will model POT using two different thresholds
95% and 90% of -rt for the left tail and 95% and 90% of rt for the right tail.

Figure-10 gives the plot of excesses above lower 5% (95% of -rt) quantile of the ASX-
All Ordinaries, it plots the timeseries of returns above u for the left tail.

Figure 10: Excess plot-ASX-All Ordinaries
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Figure-11(a) gives the fitted GPD model with the exceedances above the threshold
for the left tail of ASX-All Ordinaries, figure-11(b) plots the same for the right tail. The
plot shows that the estimated GPD fits the exceedances.

(a) Left tail. (b) Right tail.

Figure 11: GPD fitted to tail exceedances.

The point and interval estimates of the parameters of the fitted GPD model for both
tails along with 1% VaR and 1% ES values are given in table-6.

ASX-All Ordinaries S&P-500

Lower Bound Point Estimate Upper Bound Lower Bound Point Estimate Upper Bound

Left Tail

ξ̂ -0.1 0.313 0.411 -0.1 0.278 0.373

σ̂ 0.721 0.805 0.901 0.577 0.644 0.719

V̂ aR1% 3.516 3.693 3.899 2.786 2.921 3.076

ÊS1% 5.098 5.635 6.492 3.937 4.315 4.905

Right Tail

ξ̂ 0.136 0.212 0.304 -0.1 0.175 0.261

σ̂ 0.655 0.728 0.809 0.63 0.697 0.773

V̂ aR1% 3.238 3.377 3.534 2.797 2.922 3.063

ÊS1% 4.334 4.676 5.204 3.756 4.04 4.458

Table 6: POT- Point and interval estimates for ASX-All Ordinaries and S&P-500.

Looking at the VaR and ES from table-3.6, with a 1% confidence level we can predict
tomorrow’s loss (left tail) for the ASX-All Ordinaries to exceed 3.693% and if this happens
the corresponding expected loss will be 5.635%. The same inferences can be drawn for
the S&P-500 and for both right and left tails.

Next we look at the results from the POT method fitted to excesses over 90% of
the return data, i.e. u = 90% quantile. Figure-12 gives the GPD fit plots for ASX-All
Ordinaries (left tail) the plots show that the estimated model fit the excesses.
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Figure 12: GPD fit plots-ASX-All Ordinaries (left tail)

Table-7 gives the point and interval estimates of GPD fits along with 1% VaR and
ES.

ASX-All Ordinaries S&P-500

Lower Bound Point Estimate Upper Bound Lower Bound Point Estimate Upper Bound

Left Tail

ξ̂ 0.168 0.238 0.308 0.117 0.182 0.248

σ̂ 0.700 0.772 0.843 0.597 0.656 0.714

V̂ aR1% 3.602 3.772 3.997 2.923 3.001 3.129

ÊS1% 5.071 5.525 6.156 3.923 4.221 4.625

Right Tail

ξ̂ 0.096 0.167 0.239 0.081 0.151 0.220

σ̂ 0.620 0.684 0.749 0.585 0.645 0.705

V̂ aR1% 3.270 3.405 3.540 2.818 2.938 3.067

ÊS1% 4.306 4.614 5.037 3.747 4.014 4.381

Table 7: POT- Point and interval estimates for ASX-All Ordinaries and S&P-500 (u=90%
quantile)

Figure-13 gives the tail plot of ASX-All Ordinaries with 1% VaR and 1% ES with
their 95% confidence interval estimates.
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Figure 13: Tail Plot-ASX-All Ordinaries

5.3. Dynamic-EVT VaR

EVT can not only be used in a static approach to predict VaR as seen in the results
of previous subsection, it can also be used in a dynamic model to predict time varying
VaR estimates (section-3.4). Here we use a moving window of the last 1000 days log
returns for ASX-All Ordinaries and S&P-500 indices to forecast one day ahead 1% and
5% VaR estimates. The total data period is approximately 10 years (Jan-2000 to Dec-
2010) containing 2850 daily log returns for both the indices, which gives us a total of
1850 predictions.

The method uses a two step approach in which we predict the next day volatility (σ)

and mean expected return (µ) using a GARCH (1,1) model in first step and in the second
we fit the residuals of the step-1 to GPD to get quantile values for final VaR calculations
(equation-28). We chose a 90% quantile level as threshold, u to fit the residuals from
the GARCH(1,1) model to GPD. The forecasts from this method are compared with the
forecasts from normal a GARCH (1,1) where residuals are assumed to belong to normal
distribution and to the RiskMetricsTM model [29].

We use a violation based backtesting method [40] for the forecasted 1% and 5% VaR
estimates. If we have a next day predicted quantile r̂tq and the actual return rt+1, a
violation is said to occur if rt+1 > r̂tq , i.e. the actual loss is greater than the forecasted
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VaR. A binomial test for the success of these VaR forecasting models can be developed
based on the number of violations. The test based on violations counts only two possible
(binomial) outcomes of a violation or no violation. If q is the quantile for VaR (95% and
99%) the estimated number of violations are given by (1− q)Total Predictions (Trials).
We will calculate a two sided binomial test of the null hypothesis against the alternative
that the method has prediction errors and it underestimates (too many violations) or
overestimates (too few violations) the conditional quantile.

Figure-14 gives the plot of 1% VaR estimates of ASX-All Ordinaries from the three
models plotted with the actual return series for the prediction period. It is evident from
the figure that the dynamic-EVT method closely follows the changing return dynamics of
the market. Also in figure-15 we plot dynamic-EVT based on 1% VaR with the original
return series for the ASX-All Ordinaries, the estimates here are changing closely with
the changing market dynamics and they estimate the extreme risk better in the extreme
market conditions.

Figure 14: VaR Forecasts-ASX-All Ordinaries
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ASX-All Ordinaries S&P-500

Total Predictions 1850 1850

q=0.99

Expected 18 18

Dynamic-EVT 23(0.29) 34(0.00)

GARCH(1,1) 42(0.00) 49(0.00)

RiskMetricsTM 43(0.00) 45(0.00)

q=0.95

Expected 92 92

Dynamic-EVT 81(0.24) 104(0.22)

GARCH(1,1) 123(0.00) 115(0.02)

RiskMetricsTM 107(0.12) 117(0.01)

Table 8: Results-Backtesting VaR

Figure 15: Dynamic-EVT VaR forecasts.

Table-8 gives the backtest statistics for the models along with the two-sided p-value,
a p-value greater than 0.05 shows the rejection of alternate hypothesis and hence is
significant. The results show that apart from on one occasion (5% VaR for S&P-500)
the dynamic-EVT method works better than all the other methods, in this case even
when the p-value does not approve the method the method still has the least number
of violations. Other significant result is that the other two models i.e. GARCH(1,1)
and RiskMetricsTM fail for both quantile levels except RiskMetricsTM for the ASX-All
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Ordinaries (q=0.95).
The forecasted period here includes the period of the GFC and it can be seen from

the forecasted VaR that the method works well in the crisis period as well, which shows
the capabilities of the EVT approach for modelling extreme market events. The dynamic
model changes itself with changing market dynamics and hence the forecasted VaR values
represent more closely the extreme risk of the market.

6. Conclusion

In this paper we focused on the extreme market risk of financial markets and illus-
trated how extreme value theory can be used to model extreme events and their associated
risk levels. EVT as demonstrated by the empirical exercise here, can be used to model
financial risk measures like VaR, ES and Return Level to asses extreme tail events.

EVT can be used to quantify the size of extreme events, with the help of the two
major approaches to application of EVT; BMM and POT. The applicability of both the
methods depend on the the availability of data, the desired time horizon and the kind
of risk measures we want to forecast. For fairly large data sets with non overlapping
block periods BMM method can be a useful technique as it is simple to implement and
provides Return Level and Return Period forecasts which are useful for stress testing
purposes. The POT method has its advantages in modelling the available data more
efficiently than BMM as it uses excesses over a threshold and can be more effective if we
have limited data sets. The techniques give point as well as interval estimates of the risk
measures which are useful in risk assessment in financial risk management.

We also demonstrate how we can use a GARCH based dynamic-EVT approach to
model VaR for short term forecasting. The dynamic-EVT method has the advantage of
dynamically reacting to changing market conditions which is useful in getting better VaR
forecasts. We show with our analysis that this method performs better than the other
widely used methods of normal GARCH(1,1) and RiskMetricsTM , not only in normal
market conditions but also in extreme market conditions such as the recent GFC.

To summarize we followed both unconditional and conditional EVT based VaR es-
timation models to forecast VaR for Australian and USA stock markets. We also used
EVT to quantify ES in an unconditional model (which can also be used in a conditional
model as VaR). Our results show that EVT can be quite useful in financial risk modelling
and given the occurrence of extreme market events it can be used for efficient extreme
market risk modelling.
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